
Beanstalk
Fix Review

July 22, 2022

Prepared for:

Publius

Beanstalk

Prepared by: Jaime Iglesias and Bo Henderson

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 80+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Beanstalk Fix Review
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Beanstalk
under the terms of the project statement of work and has been made public at Beanstalk’s
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

Trail of Bits 2 Beanstalk Fix Review
PUBLIC

Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 5

Project Summary 7

Project Methodology 8

Project Targets 9

Summary of Fix Review Results 10

Detailed Fix Review Results 11

1. Attackers could mint more Fertilizer than intended due to an unused variable 11

2. Lack of a two-step process for ownership transfer 13

3. Possible underflow could allow more Fertilizer than MAX_RAISE to be minted 14

4. Risk of Fertilizer id collision that could result in loss of funds 16

5. The sunrise() function rewards callers only with the base incentive 20

6. Solidity compiler optimizations can be problematic 21

7. Lack of support for external transfers of nonstandard ERC20 tokens 22

8. Plot transfers from users with allowances revert if the owner has an existing pod
listing 24

9. Users can sow more Bean tokens than are burned 26

10. Pods may never ripen 29

11. Bean and the offer backing it are strongly correlated 31

12. Ability to whitelist assets uncorrelated with Bean price, misaligning governance
incentives 33

Trail of Bits 3 Beanstalk Fix Review
PUBLIC

13. Unchecked burnFrom return value 35

A. Status Categories 37

B. Vulnerability Categories 38

Trail of Bits 4 Beanstalk Fix Review
PUBLIC

Executive Summary

Engagement Overview
Beanstalk engaged Trail of Bits to review the security of its Beanstalk protocol. Specifically,
Trail of Bits reviewed the state of the protocol during the Barn Raise, a community
fundraiser intended to recapitalize the protocol after an attack in April of 2022, resulting in
the loss of approximately $77 million in assets. From June 2 to July 6, 2022, a team of two
consultants conducted a security review of the client-provided source code, with eight
person-weeks of effort. Details of the project’s scope, timeline, test targets, and coverage
are provided in the original audit report.

Beanstalk contracted Trail of Bits to review the fixes implemented for issues identified in
the original report. From July 12 to July 14, 2022, one consultant conducted a review of the
client-provided source code, with three person-days of effort.

Summary of Findings
The original audit uncovered significant flaws that could impact system confidentiality,
integrity, or availability. A summary of the original findings is provided below.

EXPOSURE ANALYSIS

Severity Count

High 3

Medium 3

Low 1

Informational 3

Undetermined 3

CATEGORY BREAKDOWN

Category Count

Data Validation 8

Economic 3

Undefined Behavior 2

Trail of Bits 5 Beanstalk Fix Review
PUBLIC

https://halborn.com/explained-the-beanstalk-hack-april-2022/

Overview of Fix Review Results
Beanstalk has sufficiently addressed most of the issues described in the original audit
report. The Beanstalk team has acknowledged and accepted the risks associated with four
of the issues reported, including an informational-severity issue regarding the use of a
Solidity optimizer and three economic/governance issues; the team provided comments
describing the rationale for its acceptance of the risks associated with the
economic/governance issues. All other issues have been sufficiently fixed.

Trail of Bits 6 Beanstalk Fix Review
PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Anne Marie Barry, Project Manager
dan@trailofbits.com annemarie.barry@trailofbits.com

The following engineers were associated with this project:

Jaime Iglesias, Consultant Bo Henderson, Consultant
jaime.iglesias@trailofbits.com bo.henderson@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

June 2, 2022 Pre-project kickoff call

June 13, 2022 Status update meeting #1

June 17, 2022 Status update meeting #2

June 24, 2022 Status update meeting #3

July 6, 2022 Delivery of report draft

July 7, 2022 Report readout meeting

July 22, 2022 Delivery of final report

July 22, 2022 Delivery of fix review

Trail of Bits 7 Beanstalk Fix Review
PUBLIC

Project Methodology

Our work in the fix review included the following:

● A review of the findings in the original audit report

● A manual review of the client-provided source code and configuration material

● A check for any updates to the documentation and the unit test suite that Beanstalk
may have made after the completion of the original audit

○ In terms of documentation, we found that Beanstalk updated the public
protocol documentation. However, the documentation is still a work in
progress and does not yet feature an adequate glossary.

○ In terms of the unit test suite, we found that Beanstalk added new tests,
many of which will prevent issues similar to those reported in the original
audit from being (re)introduced. The team also commented out certain tests,
some of which may have required updates following the team’s fixes to
certain issues. We recommend reimplementing these commented-out tests,
fixing them, and running them alongside the others as part of an automated
process.

Trail of Bits 8 Beanstalk Fix Review
PUBLIC

Project Targets

The engagement involved a review of the fixes implemented in the following target.

Beanstalk

Repository https://github.com/BeanstalkFarms/Beanstalk-Replanted

Version 9422ad60cbb4ece7cfb4f0925c4586fb4582e7df

Type Solidity

Platform EVM

Trail of Bits 9 Beanstalk Fix Review
PUBLIC

Summary of Fix Review Results

The table below summarizes each of the original findings and indicates whether the issue
has been sufficiently resolved.

ID Title Status

1 Attackers could mint more Fertilizer than intended due to an unused
variable

Resolved

2 Lack of a two-step process for ownership transfer Resolved

3 Possible underflow could allow more Fertilizer than MAX_RAISE to be
minted

Resolved

4 Risk of Fertilizer id collision that could result in loss of funds Resolved

5 The sunrise() function rewards callers only with the base incentive Resolved

6 Solidity compiler optimizations can be problematic Unresolved

7 Lack of support for external transfers of nonstandard ERC20 tokens Resolved

8 Plot transfers from users with allowances revert if the owner has an
existing pod listing

Resolved

9 Users can sow more soil than Bean tokens than are burned Resolved

10 Pods may never ripen Unresolved

11 Bean and the offer backing it are strongly correlated Unresolved

12 Ability to whitelist assets uncorrelated with Bean price, misaligning
governance incentives

Unresolved

13 Unchecked burnFrom return value Resolved

Trail of Bits 10 Beanstalk Fix Review
PUBLIC

Detailed Fix Review Results

1. Attackers could mint more Fertilizer than intended due to an unused
variable

Status: Resolved

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-BEANS-001

Target: protocol/contracts/farm/facets/FertilizerFacet.sol

Description
Due to an unused local variable, an attacker could mint more Fertilizer than should be
allowed by the sale.

The mintFertilizer() function checks that the _amount variable is no greater than the
remaining variable; this ensures that more Fertilizer than intended cannot be minted;
however, the _amount variable is not used in subsequent function calls—instead, the
amount variable is used; the code effectively skips this check, allowing users to mint more
Fertilizer than required to recapitalize the protocol.

function mintFertilizer(
uint128 amount,
uint256 minLP,
LibTransfer.From mode

) external payable {
uint256 remaining = LibFertilizer.remainingRecapitalization();
uint256 _amount = uint256(amount);
if (_amount > remaining) _amount = remaining;
LibTransfer.receiveToken(

C.usdc(),
uint256(amount).mul(1e6),
msg.sender,
mode

);
uint128 id = LibFertilizer.addFertilizer(

uint128(s.season.current),
amount,
minLP

);
C.fertilizer().beanstalkMint(msg.sender, uint256(id), amount, s.bpf);

}

Trail of Bits 11 Beanstalk Fix Review
PUBLIC

Figure 1.1: The mintFertilizer() function in FertilizerFacet.sol#L35-56

Note that this flaw can be exploited only once: if users mint more Fertilizer than intended,
the remainingRecapitalization() function returns 0 because the
dollarPerUnripeLP() and unripeLP().totalSupply() variables are constants.

function remainingRecapitalization()
internal
view
returns (uint256 remaining)

{
AppStorage storage s = LibAppStorage.diamondStorage();
uint256 totalDollars = C

.dollarPerUnripeLP()

.mul(C.unripeLP().totalSupply())

.div(DECIMALS);
if (s.recapitalized >= totalDollars) return 0;
return totalDollars.sub(s.recapitalized);

}

Figure 1.2: The remainingRecapitalization() function in
LibFertilizer.sol#L132-145

Fix Analysis
This issue has been resolved. The _amount variable has been removed, and the previous
assignment to that variable now overwrites amount instead. This fixes the implementation
issue and also eliminates the risk of having two similarly named variables, decreasing the
likelihood that a similar implementation issue will be reintroduced.

Trail of Bits 12 Beanstalk Fix Review
PUBLIC

2. Lack of a two-step process for ownership transfer

Status: Resolved

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-BEANS-002

Target: protocol/contracts/farm/facets/OwnershipFacet.sol

Description
The transferOwnership() function is used to change the owner of the Beanstalk
protocol. This function calls the setContractOwner() function, which immediately sets
the contract’s new owner. Transferring ownership in one function call is error-prone and
could result in irrevocable mistakes.

function transferOwnership(address _newOwner) external override {
LibDiamond.enforceIsContractOwner();
LibDiamond.setContractOwner(_newOwner);

}

Figure 2.1: The transferOwnership() function in OwnershipFacet.sol#L13-16

Fix Analysis
This issue has been resolved. The transferOwnership method now sets an
ownerCandidate state variable, and a subsequent claimOwnership method must be
called by the ownerCandidate to confirm the ownership transfer. This sufficiently
mitigates the risk of making an irrevocable mistake while transferring ownership.

Trail of Bits 13 Beanstalk Fix Review
PUBLIC

3. Possible underflow could allow more Fertilizer than MAX_RAISE to be
minted

Status: Resolved

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-BEANS-003

Target: protocol/contracts/fertilizer/FertilizerPremint.sol

Description
The remaining() function could underflow, which could allow the Barn Raise to continue
indefinitely.

Fertilizer is an ERC1155 token issued for participation in the Barn Raise, a community
fundraiser intended to recapitalize the Beanstalk protocol with Bean and liquidity provider
(LP) tokens that were stolen during the April 2022 governance hack.

Fertilizer entitles holders to a pro rata portion of one-third of minted Bean tokens if the
Fertilizer token is active, and it can be minted as long as the recapitalization target ($77
million) has not been reached.

Users who want to buy Fertilizer call the mint() function and provide one USDC for each
Fertilizer token they want to mint.

function mint(uint256 amount) external payable nonReentrant {
uint256 r = remaining();
if (amount > r) amount = r;
__mint(amount);
IUSDC.transferFrom(msg.sender, CUSTODIAN, amount);

}

Figure 3.1: The mint() function in FertilizerPremint.sol#L51-56

The mint() function first checks how many Fertilizer tokens remain to be minted by calling
the remaining() function (figure 3.2); if the user is trying to mint more Fertilizer than
available, the mint() function mints all of the Fertilizer tokens that remain.

function remaining() public view returns (uint256) {
return MAX_RAISE - IUSDC.balanceOf(CUSTODIAN);

}

Figure 3.2: The remaining() function in FertilizerPremint.sol#L84-87

Trail of Bits 14 Beanstalk Fix Review
PUBLIC

However, the FertilizerPremint contract does not use Solidity 0.8, so it does not have
native overflow and underflow protection. As a result, if the amount of Fertilizer purchased
reaches MAX_RAISE (i.e., 77 million), an attacker could simply send one USDC to the
CUSTODIAN wallet to cause the remaining() function to underflow, allowing the sale to
continue indefinitely.

In this particular case, Beanstalk protocol funds are not at risk because all the USDC used
to purchase Fertilizer tokens is sent to a Beanstalk community-owned multisignature
wallet; however, users who buy Fertilizer after such an exploit would lose the gas funds
they spent, and the project would incur further reputational damage.

Fix Analysis
This issue has been resolved. An additional check has been added to the remaining()
function that will return zero instead of underflowing if the custodian’s balance is above the
value of MAX_RAISED.

Trail of Bits 15 Beanstalk Fix Review
PUBLIC

4. Risk of Fertilizer id collision that could result in loss of funds

Status: Resolved

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-BEANS-004

Target: protocol/contracts/fertilizer/Fertilizer.sol

Description
If a user mints Fertilizer tokens twice during two different seasons, the same token id for
both tokens could be calculated, and the first entry will be overridden; if this occurs and the
bpf value changes, the user would be entitled to less yield than expected.

To mint new Fertilizer tokens, users call the mintFertilizer() function in the
FertilizerFacet contract. An id is calculated for each new Fertilizer token that is
minted; not only is this id an identifier for the token, but it also represents the endBpf
period, which is the moment at which the Fertilizer reaches “maturity” and can be
redeemed without incurring any penalty.

function mintFertilizer(
uint128 amount,
uint256 minLP,
LibTransfer.From mode

) external payable {
uint256 remaining = LibFertilizer.remainingRecapitalization();
uint256 _amount = uint256(amount);
if (_amount > remaining) _amount = remaining;
LibTransfer.receiveToken(

C.usdc(),
uint256(amount).mul(1e6),
msg.sender,
mode

);
uint128 id = LibFertilizer.addFertilizer(

uint128(s.season.current),
amount,
minLP

);
C.fertilizer().beanstalkMint(msg.sender, uint256(id), amount, s.bpf);

}

Figure 4.1: The mintFertilizer() function in Fertilizer.sol#L35-55

Trail of Bits 16 Beanstalk Fix Review
PUBLIC

The id is calculated by the addFertilizer() function in the LibFertilizer library as
the sum of 1 and the bpf and humidity values.

function addFertilizer(
uint128 season,
uint128 amount,
uint256 minLP

) internal returns (uint128 id) {
AppStorage storage s = LibAppStorage.diamondStorage();
uint256 _amount = uint256(amount);
// Calculate Beans Per Fertilizer and add to total owed
uint128 bpf = getBpf(season);
s.unfertilizedIndex = s.unfertilizedIndex.add(

_amount.mul(uint128(bpf))
);
// Get id
id = s.bpf.add(bpf);
[...]

}

function getBpf(uint128 id) internal pure returns (uint128 bpf) {
bpf = getHumidity(id).add(1000).mul(PADDING);

}

function getHumidity(uint128 id) internal pure returns (uint128 humidity) {
if (id == REPLANT_SEASON) return 5000;
if (id >= END_DECREASE_SEASON) return 200;
uint128 humidityDecrease = id.sub(REPLANT_SEASON + 1).mul(5);
humidity = RESTART_HUMIDITY.sub(humidityDecrease);

}

Figure 4.2: The id calculation in LibFertilizer.sol#L32-67

However, the method that generates these token ids does not prevent collisions. The bpf
value is always increasing (or does not move), and humidity decreases every season until
it reaches 20%. This makes it possible for a user to mint two tokens in two different
seasons with different bpf and humidity values and still get the same token id.

function beanstalkMint(address account, uint256 id, uint128 amount, uint128 bpf)
external onlyOwner {

_balances[id][account].lastBpf = bpf;
_safeMint(

account,
id,
amount,
bytes('0')

);
}

Figure 4.3: The beanstalkMint() function in Fertilizer.sol#L40-48

Trail of Bits 17 Beanstalk Fix Review
PUBLIC

An id collision is not necessarily a problem; however, when a token is minted, the value of
the lastBpf field is set to the bpf of the current season, as shown in figure 4.3. This field is
very important because it is used to determine the penalty, if any, that a user will incur
when redeeming Fertilizer.

To redeem Fertilizer, users call the claimFertilizer() function, which in turn calls the
beanstalkUpdate() function on the Fertilizer contract.

function claimFertilized(uint256[] calldata ids, LibTransfer.To mode)
external
payable

{
uint256 amount = C.fertilizer().beanstalkUpdate(msg.sender, ids, s.bpf);
LibTransfer.sendToken(C.bean(), amount, msg.sender, mode);

}

Figure 4.4: The claimFertilizer() function in FertilizerFacet.sol#L27-33

function beanstalkUpdate(
address account,
uint256[] memory ids,
uint128 bpf

) external onlyOwner returns (uint256) {
return __update(account, ids, uint256(bpf));

}

function __update(
address account,
uint256[] memory ids,
uint256 bpf

) internal returns (uint256 beans) {
for (uint256 i = 0; i < ids.length; i++) {

uint256 stopBpf = bpf < ids[i] ? bpf : ids[i];
uint256 deltaBpf = stopBpf - _balances[ids[i]][account].lastBpf;
if (deltaBpf > 0) {

beans = beans.add(deltaBpf.mul(_balances[ids[i]][account].amount));
_balances[ids[i]][account].lastBpf = uint128(stopBpf);

}
}
emit ClaimFertilizer(ids, beans);

}

Figure 4.5: The update flow in Fertilizer.sol#L32-38 and L72-86

The beanstalkUpdate() function then calls the __update() function. This function first
calculates the stopBpf value, which is one of two possible values. If the Fertilizer is being
redeemed early, stopBpf is the bpf at which the Fertilizer is being redeemed; if the token
is being redeemed at “maturity” or later, stopBpf is the token id (i.e., the endBpf value).
Afterward, __update() calculates the deltaBpf value, which is used to determine the

Trail of Bits 18 Beanstalk Fix Review
PUBLIC

penalty, if any, that the user will incur when redeeming the token; deltaBpf is calculated
using the stopBpf value that was already defined and the lastBpf value, which is the bpf
corresponding to the last time the token was redeemed or, if it was never redeemed, the
bpf at the moment the token was minted. Finally, the token’s lastBpf field is updated to
the stopBpf.

Because of the id collision, users could accidentally mint Fertilizer tokens with the same id
in two different seasons and override their first mint’s lastBpf field, ultimately reducing
the amount of yield they are entitled to.

Fix Analysis
This issue has been resolved. Collisions of Fertilizer ids are still possible; however, the
Beanstalk team added an additional call to __update to claim unclaimed Bean tokens and
to update values such that Fertilizer tokens with the same id also have the same lastBpf.
This prevents funds from being lost, a risk described in this finding.

Trail of Bits 19 Beanstalk Fix Review
PUBLIC

5. The sunrise() function rewards callers only with the base incentive

Status: Resolved

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-BEANS-005

Target: protocol/contracts/farm/facets/SeasonFacet/SeasonFacet.sol

Description
The increasing incentive that encourages users to call the sunrise() function in a timely
manner is not actually applied.

According to the Beanstalk white paper, the reward paid to users who call the sunrise()
function should increase by 1% every second (for up to 300 seconds) after this method is
eligible to be called; this incentive is designed so that, even when gas prices are high, the
system can move on to the next season in a timely manner.

This increasing incentive is calculated and included in the emitted logs, but it is not actually
applied to the number of Bean tokens rewarded to users who call sunrise().

function incentivize(address account, uint256 amount) private {
uint256 timestamp = block.timestamp.sub(

s.season.start.add(s.season.period.mul(season()))
);
if (timestamp > 300) timestamp = 300;
uint256 incentive = LibIncentive.fracExp(amount, 100, timestamp, 1);
C.bean().mint(account, amount);
emit Incentivization(account, incentive);

}

Figure 5.1: The incentive calculation in SeasonFacet.sol#70-78

Fix Analysis
This issue has been resolved. The incentive value, instead of the provided amount, is
now used to mint the rewarded Bean tokens. This properly applies the increasing incentive
described by the white paper.

Trail of Bits 20 Beanstalk Fix Review
PUBLIC

6. Solidity compiler optimizations can be problematic

Status: Unresolved

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-BEANS-006

Target: The Beanstalk protocol

Description
Beanstalk has enabled optional compiler optimizations in Solidity.

There have been several optimization bugs with security implications. Moreover,
optimizations are actively being developed. Solidity compiler optimizations are disabled by
default, and it is unclear how many contracts in the wild actually use them. Therefore, it is
unclear how well they are being tested and exercised.

High-severity security issues due to optimization bugs have occurred in the past. A
high-severity bug in the emscripten-generated solc-js compiler used by Truffle and
Remix persisted until late 2018. The fix for this bug was not reported in the Solidity
CHANGELOG. Another high-severity optimization bug resulting in incorrect bit shift results
was patched in Solidity 0.5.6. More recently, another bug due to the incorrect caching of
keccak256 was reported.

A compiler audit of Solidity from November 2018 concluded that the optional optimizations
may not be safe.

It is likely that there are latent bugs related to optimization and that new bugs will be
introduced due to future optimizations.

Fix Analysis
This issue has not been resolved. The Beanstalk team understands the risks of using
compiler optimizations and has chosen to accept them without making any changes to the
contract compilation process.

Trail of Bits 21 Beanstalk Fix Review
PUBLIC

https://github.com/ethereum/solidity/pulls?q=label%3Aoptimizer+
https://docs.soliditylang.org/en/latest/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.csz7fns3yza3
https://github.com/ethereum/solidity/releases/tag/v0.5.6
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.openzeppelin.com/solidity-compiler-audit-8cfc0316a420/
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn

7. Lack of support for external transfers of nonstandard ERC20 tokens

Status: Resolved

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-BEANS-007

Target: protocol/contracts/farm/facets/TokenFacet.sol

Description
For external transfers of nonstandard ERC20 tokens via the TokenFacet contract, the code
uses the standard transferFrom operation from the given token contract without
checking the operation’s returndata; as a result, successfully executed transactions that
fail to transfer tokens will go unnoticed, causing confusion in users who believe their funds
were successfully transferred.

The TokenFacet contract exposes transferToken(), an external function that users can
call to transfer ERC20 tokens both to and from the contract and between users.

function transferToken(
IERC20 token,
address recipient,
uint256 amount,
LibTransfer.From fromMode,
LibTransfer.To toMode

) external payable {
LibTransfer.transferToken(token, recipient, amount, fromMode, toMode);

}

Figure 7.1: The transferToken() function in TokenFacet.sol#L39-47

This function calls the LibTransfer library, which handles the token transfer.

function transferToken(
IERC20 token,
address recipient,
uint256 amount,
From fromMode,
To toMode

) internal returns (uint256 transferredAmount) {
if (fromMode == From.EXTERNAL && toMode == To.EXTERNAL) {

token.transferFrom(msg.sender, recipient, amount);
return amount;

}

Trail of Bits 22 Beanstalk Fix Review
PUBLIC

amount = receiveToken(token, amount, msg.sender, fromMode);
sendToken(token, amount, recipient, toMode);
return amount;

}

Figure 7.2: The transferToken() function in LibTransfer.sol#L29-43

The LibTransfer library uses the fromMode and toMode values to determine a transfer’s
sender and receiver, respectively; in most cases, it uses the safeERC20 library to execute
transfers.

However, if fromMode and toMode are both marked as EXTERNAL, then the transferFrom
function of the token contract will be called directly, and safeERC20 will not be used.
Essentially, if a user tries to transfer a nonstandard ERC20 token that does not revert on
failure and instead indicates a transaction’s success or failure in its return data, the user
could be led to believe that failed token transfers were successful.

Fix Analysis
This issue has been resolved. Transfers of nonstandard ERC20 tokens are now performed
using safeTransferFrom, and afterward, an additional underflow-resistant balance check
is performed. This ensures that such transactions will revert on invalid transfers, including
those attempting to transfer nonstandard tokens that return false instead of reverting on
invalid transfers.

Trail of Bits 23 Beanstalk Fix Review
PUBLIC

8. Plot transfers from users with allowances revert if the owner has an
existing pod listing

Status: Resolved

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-BEANS-008

Target: protocol/contracts/farm/facets/MarketplaceFacet.sol

Description
Whenever a plot transfer is executed by a user with an allowance (i.e., a transfer in which
the caller was approved by the plot’s owner), the transfer will revert if there is an existing
listing for the pods contained in that plot.

The MarketplaceFacet contract exposes a function, transferPlot(), that allows the
owner of a plot to transfer the pods in that plot to another user; additionally, the owner of
a plot can call the approvePods() function (figure 8.1) to approve other users to transfer
these pods on the owner’s behalf.

function approvePods(address spender, uint256 amount)
external
payable
nonReentrant

{
require(spender != address(0), "Field: Pod Approve to 0 address.");
setAllowancePods(msg.sender, spender, amount);
emit PodApproval(msg.sender, spender, amount);

}

Figure 8.1: The approvePods() function in MarketplaceFacet.sol#L147-155

Once approved, the given address can call the transferPlot() function to transfer pods
on the owner’s behalf. The function checks and decreases the allowance and then checks
whether there is an existing pod listing for the target pods. If there is an existing listing, the
function tries to cancel it by calling the _cancelPodListing() function.

function transferPlot(
address sender,
address recipient,
uint256 id,
uint256 start,

Trail of Bits 24 Beanstalk Fix Review
PUBLIC

uint256 end
) external payable nonReentrant {

require(
sender != address(0) && recipient != address(0),
"Field: Transfer to/from 0 address."

);
uint256 amount = s.a[sender].field.plots[id];
require(amount > 0, "Field: Plot not owned by user.");
require(end > start && amount >= end, "Field: Pod range invalid.");
amount = end - start; // Note: SafeMath is redundant here.
if (

msg.sender != sender &&
allowancePods(sender, msg.sender) != uint256(-1)

) {
decrementAllowancePods(sender, msg.sender, amount);

}

if (s.podListings[id] != bytes32(0)) {
_cancelPodListing(id); // TODO: Look into this cancelling.

}
_transferPlot(sender, recipient, id, start, amount);

}

Figure 8.2: The transferPlot() function in MarketplaceFacet.sol#L119-145

The _cancelPodListing() function receives only an id as the input and relies on the
msg.sender to determine the listing’s owner. However, if the transfer is executed by a user
with an allowance, the msg.sender is the user who was granted the allowance, not the
owner of the listing. As a result, the function will revert.

function _cancelPodListing(uint256 index) internal {
require(

s.a[msg.sender].field.plots[index] > 0,
"Marketplace: Listing not owned by sender."

);
delete s.podListings[index];
emit PodListingCancelled(msg.sender, index);

}

Figure 8.3: The _cancelPodListing() function in Listing.sol#L149-156

Fix Analysis
This issue has been resolved. The _cancelPodListing function now accepts an owner
parameter instead of using msg.sender.

Trail of Bits 25 Beanstalk Fix Review
PUBLIC

9. Users can sow more Bean tokens than are burned

Status: Resolved

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-BEANS-009

Target: protocol/contracts/farm/facets/FieldFacet.sol

Description
An accounting error allows users to sow more Bean tokens than the available soil allows.

Whenever the price of Bean is below its peg, the protocol issues soil. Soil represents the
willingness of the protocol to take Bean tokens off the market in exchange for a pod.
Essentially, Bean owners loan their tokens to the protocol and receive pods in exchange.
We can think of pods as non-callable bonds that mature on a first-in-first-out (FIFO) basis as
the protocol issues new Bean tokens.

Whenever soil is available, users can call the sow() and sowWithMin() functions in the
FieldFacet contract.

function sowWithMin(
uint256 amount,
uint256 minAmount,
LibTransfer.From mode

) public payable returns (uint256) {
uint256 sowAmount = s.f.soil;
require(

sowAmount >= minAmount && amount >= minAmount && minAmount > 0,
"Field: Sowing below min or 0 pods."

);
if (amount < sowAmount) sowAmount = amount;
return _sow(sowAmount, mode);

}

Figure 9.1: The sowWithMin() function in FieldFacet.sol#L41-53

The sowWithMin() function ensures that there is enough soil to sow the given number of
Bean tokens and that the call will not sow fewer tokens than the specified minAmount.
Once it makes these checks, it calls the _sow() function.

function _sow(uint256 amount, LibTransfer.From mode)
internal

Trail of Bits 26 Beanstalk Fix Review
PUBLIC

returns (uint256 pods)
{

pods = LibDibbler.sow(amount, msg.sender);
if (mode == LibTransfer.From.EXTERNAL)

C.bean().burnFrom(msg.sender, amount);
else {

amount = LibTransfer.receiveToken(C.bean(), amount, msg.sender, mode);
C.bean().burn(amount);

}
}

Figure 9.2: The _sow() function in FieldFacet.sol#L55-65

The _sow() function first calculates the number of pods that will be sown by calling the
sow() function in the LibDibbler library, which performs the internal accounting and
calculates the number of pods that the user is entitled to.

function sow(uint256 amount, address account) internal returns (uint256) {
AppStorage storage s = LibAppStorage.diamondStorage();
// We can assume amount <= soil from getSowAmount
s.f.soil = s.f.soil - amount;
return sowNoSoil(amount, account);

}

function sowNoSoil(uint256 amount, address account)
internal
returns (uint256)

{
AppStorage storage s = LibAppStorage.diamondStorage();
uint256 pods = beansToPods(amount, s.w.yield);
sowPlot(account, amount, pods);
s.f.pods = s.f.pods.add(pods);
saveSowTime();
return pods;

}

function sowPlot(
address account,
uint256 beans,
uint256 pods

) private {
AppStorage storage s = LibAppStorage.diamondStorage();
s.a[account].field.plots[s.f.pods] = pods;
emit Sow(account, s.f.pods, beans, pods);

}

Figure 9.3: The sow(), sowNoSoil(), and sowPlot() functions in LibDibbler.sol#L41-53

Finally, the sowWithMin() function burns the Bean tokens from the caller’s account,
removing them from the supply. To do so, the function calls burnFrom() if the mode

Trail of Bits 27 Beanstalk Fix Review
PUBLIC

parameter is EXTERNAL (i.e., if the Bean tokens to be burned are not escrowed in the
contract) and burn() if the Bean tokens are escrowed.

If the mode parameter is not EXTERNAL, the receiveToken() function is executed to
update the internal accounting of the contract before burning the tokens. This function
returns the number of tokens that were “transferred” into the contract.

In essence, the receiveToken() function allows the contract to correctly account for
token transfers into it and to manage internal balances without performing token transfers.

function receiveToken(
IERC20 token,
uint256 amount,
address sender,
From mode

) internal returns (uint256 receivedAmount) {
if (amount == 0) return 0;
if (mode != From.EXTERNAL) {

receivedAmount = LibBalance.decreaseInternalBalance(
sender,
token,
amount,
mode != From.INTERNAL

);
if (amount == receivedAmount || mode == From.INTERNAL_TOLERANT)

return receivedAmount;
}
token.safeTransferFrom(sender, address(this), amount - receivedAmount);
return amount;

}

Figure 9.4: The receiveToken() function in FieldFacet.sol#L41-53

However, if the mode parameter is INTERNAL_TOLERANT, the contract allows the user to
partially fill amount (i.e., to transfer as much as the user can), which means that if the user
does not own the given amount of Bean tokens, the protocol simply burns as many tokens
as the user owns but still allows the user to sow the full amount.

Fix Analysis
This issue has been resolved. The number of Bean tokens sown now depends on the
amount transferred rather than the provided input amount.

Trail of Bits 28 Beanstalk Fix Review
PUBLIC

10. Pods may never ripen

Status: Unresolved

Severity: Undetermined Difficulty: Undetermined

Type: Economic Finding ID: TOB-BEANS-010

Target: The Beanstalk protocol

Description
Whenever the price of Bean is below its peg, the protocol takes Bean tokens off the market
in exchange for a number of pods dependent on the current interest rate. Essentially, Bean
owners loan their tokens to the protocol and receive pods in exchange. We can think of
pods as loans that are repaid on a FIFO basis as the protocol issues new Bean tokens. A
group of pods that are created together is called a plot.

The queue of plots is referred to as the pod line. The pod line has no practical bound on its
length, so during periods of decreasing demand, it can grow indefinitely. No yield is
awarded until the given plot owner is first in line and until the price of Bean is above its
value peg.

While the protocol does not default on its debt, the only way for pods to ripen is if demand
increases enough for the price of Bean to be above its value peg for some time. While the
price of Bean is above its peg, a portion of newly minted Bean tokens is used to repay the
first plot in the pod line until fully repaid, decreasing the length of the pod line.

During an extended period of decreasing supply, the pod line could grow long enough that
lenders receive an unappealing time-weighted rate of return, even if the yield is increased;
a sufficiently long pod line could encourage users—uncertain of whether future demand
will grow enough for them to be repaid—to sell their Bean tokens rather than lending them
to the protocol. Under such circumstances, the protocol will be unable to disincentivize
Bean market sales, disrupting its ability to return Bean to its value peg.

Fix Analysis
This issue has not been resolved. The Beanstalk team provided the following rationale for
its acceptance of the associated risk:

Pods are zero coupon bonds without a fixed maturity. The fact that they may never
Ripen is true by definition, so this feels a bit tautological. If you are going to leave

Trail of Bits 29 Beanstalk Fix Review
PUBLIC

this issue, you should add that Unfertilized Beans may never become Fertilized
(redeemable) either, as they are also zero coupon bonds without a fixed maturity.

Although unfertilized Bean tokens are not guaranteed to mature either, Fertilizer is not
directly critical for maintaining Bean’s value peg; therefore, Fertilizer’s lack of a maturity
date does not pose a significant risk.

Trail of Bits 30 Beanstalk Fix Review
PUBLIC

11. Bean and the o�er backing it are strongly correlated

Status: Unresolved

Severity: Undetermined Difficulty: Undetermined

Type: Economic Finding ID: TOB-BEANS-011

Target: The Beanstalk protocol

Description
In response to prolonged periods of decreasing demand for Bean tokens, the Beanstalk
protocol offers to borrow from users who own Bean tokens, decreasing the available Bean
supply and returning the Bean price to its peg. To incentivize users to lend their Bean
tokens to the protocol rather than immediately selling them in the market, which would put
further downward pressure on the price of Bean, the protocol offers users a reward of
more Bean tokens in the future.

The demand for holding Bean tokens at present and the demand for receiving Bean tokens
in the future are strongly correlated, introducing reflexive risk. If the demand for Bean
decreases, we can expect a proportional increase in the marginal Bean supply and a
decrease in demand to receive Bean in the future, weakening the system’s ability to restore
Bean to its value peg.

The FIFO queue of lenders is designed to combat reflexivity by encouraging rational actors
to quickly support a dip in Bean price rather than selling. However, this mechanism
assumes that the demand for Bean will increase in the future; investors may not share this
assumption if present demand for Bean is low. Reflexivity is present whenever a stablecoin
and the offer backing it are strongly correlated, even if the backing offer is time sensitive.

Fix Analysis
This issue has not been resolved. The Beanstalk team provided the following rationale for
its acceptance of the associated risk:

The primary source of Bean price stability is the credit of the protocol (i.e.,
Beanstalk’s ability to borrow from the market). As demand for Beans decreases,
causing a short term decrease in the price of a Bean, the benefit for lending to the
protocol is inversely correlated with the price. This is a function of the FIFO Pod
harvest schedule. As the price decreases to X, the yield for lending to Beanstalk
increases by 1/X.

Trail of Bits 31 Beanstalk Fix Review
PUBLIC

However, we recommend describing the yield as Bean-denominated benefits because
profits from an increasing price are shared with all Bean holders, not just lenders. The
expectation of positive price movements does not resolve the underlying issue.

Trail of Bits 32 Beanstalk Fix Review
PUBLIC

12. Ability to whitelist assets uncorrelated with Bean price, misaligning
governance incentives

Status: Unresolved

Severity: Undetermined Difficulty: Undetermined

Type: Economic Finding ID: TOB-BEANS-012

Target: The Beanstalk protocol

Description
Stalk is the governance token of the system, rewarded to users who deposit certain
whitelisted assets into the silo, the system’s asset storage.

When demand for Bean increases, the protocol increases the Bean supply by minting new
Bean tokens and allocating some of them to Stalk holders. Additionally, if the price of Bean
remains above its peg for an extended period of time, then a season of plenty (SoP) occurs:
Bean is minted and sold on the open market in exchange for exogenous assets such as
ETH. These exogenous assets are allocated entirely to Stalk holders.

When demand for Bean decreases, the protocol decreases the Bean supply by borrowing
Bean tokens from Bean owners. If the demand for Bean is persistently low and some of
these loans are never repaid, Stalk holders are not directly penalized by the protocol.
However, if the only whitelisted assets are strongly correlated with the price of Bean (such
as ETH:BEAN LP tokens), then the value of Stalk holders’ deposited collateral would decline,
indirectly penalizing Stalk holders for an unhealthy system.

If, however, exogenous assets without a strong correlation to Bean are whitelisted, then
Stalk holders who have deposited such assets will be protected from financial penalties if
the price of Bean crashes.

Fix Analysis
This issue has not been resolved. The Beanstalk team provided the following rationale for
its acceptance of the associated risk:

The question is more about whether or not governance incentives are misaligned
such that assets that do not have exposure to the Bean price would be whitelisted.

We would argue given that all Stalk holders have exposure to Beans, and that the
incentive for holding Beans and Stalk is Bean seigniorage, and that Bean seigniorage
is a function of demand for Beans, it would not make any sense for Stalk holders to

Trail of Bits 33 Beanstalk Fix Review
PUBLIC

vote to distribute Bean seigniorage to non-Bean holders. If this is a risk, perhaps
other risks like “minting infinite Beans misaligns governance incentives” should also
be listed. Again, the question is whether the incentives of Stalk holders are such that
the suggested behavior is economically beneficial them. In both instances, it is not.

The governance attack described in this issue is subtle, especially given that other
stablecoins accept exogenous deposits for legitimate reasons. If users are sufficiently
aware of this attack vector, then we agree with the Beanstalk team that it presents a risk
comparable to that of simpler governance attacks, which are economically beneficial to the
subset of attacking voters.

Trail of Bits 34 Beanstalk Fix Review
PUBLIC

13. Unchecked burnFrom return value

Status: Resolved

Severity: Informational Difficulty: Undetermined

Type: Undefined Behavior Finding ID: TOB-BEANS-013

Target: protocol/contracts/farm/facets/UnripeFacet.sol

Description
While recapitalizing the Beanstalk protocol, Bean and LP tokens that existed before the
2022 governance hack are represented as unripe tokens. Ripening is the process of burning
unripe tokens in exchange for a pro rata share of the underlying assets generated during
the Barn Raise. Holders of unripe tokens call the ripen function to receive their portion of
the recovered underlying assets. This portion grows while the price of Bean is above its
peg, incentivizing users to ripen their tokens later, when more of the loss has been
recovered.

The ripen code assumes that if users try to redeem more unripe tokens than they hold,
burnFrom will revert. If burnFrom returns false instead of reverting, the failure of the
balance check will go undetected, and the caller will be able to recover all of the underlying
tokens held by the contract. While LibUnripe.decrementUnderlying will revert on calls
to ripen more than the contract’s balance, it does not check the user’s balance.

The source code of the unripeToken contract was not provided for review during this
audit, so we could not determine whether its burnFrom method is implemented safely.

function ripen(
address unripeToken,
uint256 amount,
LibTransfer.To mode

) external payable nonReentrant returns (uint256 underlyingAmount) {
underlyingAmount = getPenalizedUnderlying(unripeToken, amount);

LibUnripe.decrementUnderlying(unripeToken, underlyingAmount);

IBean(unripeToken).burnFrom(msg.sender, amount);

address underlyingToken = s.u[unripeToken].underlyingToken;

IERC20(underlyingToken).sendToken(underlyingAmount, msg.sender, mode);

emit Ripen(msg.sender, unripeToken, amount, underlyingAmount);

Trail of Bits 35 Beanstalk Fix Review
PUBLIC

}

Figure 13.1: The ripen() function in UnripeFacet.sol#L51-67

Fix Analysis
This issue is resolved; no fixes were necessary. The Beanstalk team did not add any extra
assertions, so the unripeToken contract’s burnFrom method must revert if the user has
insufficient balance to burn the given amount of unripe tokens. The Beanstalk team has
confirmed that the contract will inherit its burnFrom method from a standard
OpenZeppelin ERC20Burnable library, which reverts safely and will prevent the issue from
being exploited. Additionally, the team added comments to warn future maintainers that
the ripen method depends on burnFrom to revert on underflows, decreasing the
likelihood that a severe mistake will be made during future changes to the code.

Trail of Bits 36 Beanstalk Fix Review
PUBLIC

A. Status Categories

The following table describes the statuses used to indicate whether an issue has been
sufficiently addressed.

Fix Status

Status Description

Undetermined The status of the issue was not determined during this engagement.

Unresolved The issue persists and has not been resolved.

Partially Resolved The issue persists but has been partially resolved.

Resolved The issue has been sufficiently resolved.

Trail of Bits 37 Beanstalk Fix Review
PUBLIC

B. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 38 Beanstalk Fix Review
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 39 Beanstalk Fix Review
PUBLIC

