
Beanstalk - Basin
Integration

Upgrade
Smart Contract Security

Assessment

Prepared by: Halborn

Date of Engagement: May 4th, 2023 - June 8th, 2023

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 3

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 ASSESSMENT SUMMARY 6

1.3 SCOPE 7

1.4 TEST APPROACH & METHODOLOGY 8

2 RISK METHODOLOGY 10

2.1 EXPLOITABILITY 11

2.2 IMPACT 12

2.3 SEVERITY COEFFICIENT 14

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 16

4 FINDINGS & TECH DETAILS 17

4.1 (HAL-01) ENCODE TYPE NOT ENFORCED WHILE WHITELISTING A TOKEN -

INFORMATIONAL(1.9) 19

Description 19

Code Location 19

Proof of Concept 21

BVSS 21

Recommendation 21

Remediation Plan 22

4.2 (HAL-02) UNNECESARY ELSE STATEMENT AND DELTAB VARIABLE INITIAL-

IZATION - INFORMATIONAL(1.9) 23

Description 23

Code Location 23

1



BVSS 23

Recommendation 24

Remediation Plan 24

4.3 (HAL-03) GAS INEFFICIENCY: > 0 IN A UINT256 INSTEAD OF != 0 -

INFORMATIONAL(1.9) 25

Description 25

Code Location 25

Proof of Concept 25

BVSS 26

Recommendation 26

Remediation Plan 27

5 MANUAL TESTING 28

ENCODE TYPE (test_CORE_Whitelist) 29

WELL BDV (test_CORE_WellBdv) 29

CONVERTS (test_CORE_Convert) 29

TWA DELTA B (test_CORETwaDBOracle) 30

ENROOT DEPOSIT (test_CORE_Enroot) 30

CONSTANT PRODUCT FUNCTIONS (test_WELL) 30

6 AUTOMATED TESTING 31

6.1 STATIC ANALYSIS REPORT 33

Description 33

Slither Results 33

MythX Results 36

2



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 06/02/2023 Miguel Jalon

0.2 Document Edits 06/08/2023 Miguel Jalon

0.3 Draft Review 06/09/2023 Francisco González

0.4 Draft Review 06/09/2023 Grzegorz Trawinski

0.5 Draft Review 06/09/2023 Piotr Cielas

0.6 Draft Review 06/14/2023 Gabi Urrutia

1.0 Remediation Plan 07/17/2023 Roberto Reigada

1.1 Remediation Plan Review 07/18/2023 Gabi Urrutia

3



CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Miguel Jalon Halborn Miguel.Jalon@halborn.com

Francisco
González

Halborn Francisco.Villarejo@halborn.com

Grzegorz
Trawinski

Halborn Grzegorz.Trawinski@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Miguel.Jalon@halborn.com
mailto:Francisco.Villarejo@halborn.com
mailto:Grzegorz.Trawinski@halborn.com
mailto:Piotr.Cielas@halborn.com


5

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Beanstalk is a stablecoin protocol where BEAN is the main asset around

which the whole Beanstalk farm works. The users interact with the farm

by using the Beanstalk services, allowing BEAN to periodically cross the

peg.

The Beanstalk Basin Integration aims to integrate the different Wells

deployed in the Basin to allow Stalkholders (DAO members) to interact

with the Wells and swap (or convert) assets that have been deposited

without having to make a withdrawal and thus losing all of the grown and

accumulated stalk.

Beanstalk engaged Halborn to conduct a security assessment on their smart

contracts beginning on May 4th, 2023 and ending on June 8th, 2023. The

security assessment was scoped to the smart contracts provided to the

Halborn team.

1.2 ASSESSMENT SUMMARY

The team at Halborn was provided five weeks for the engagement and assigned

a full-time security engineer to assessment the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this assessment is to:

• Ensure that smart contract functions operate as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified some code inefficiencies that were ad-

dressed/acknowledged by the Beanstalk team.

6

EX
EC

UT
IV

E
OV

ER
VI

EW



1.3 SCOPE

1. Beanstalk Protocol:

• Commit ID:

b28a58d134fb9a53e1a30e9df695ffbd28ecaf2f

• Smart Contracts in scope:

1. C.sol

2. AppStorage.sol

3. InitWhitelist.sol

4. BDVFacet.sol

5. ConvertFacet.sol

6. EnrootFacet.sol

7. SiloFacet.sol

8. WhitelistFacet.sol

9. Oracle.sol

10. SeasonFacet.sol

11. LibConvert.sol

12. LibConvertData.sol

13. LibUnripeConvert.sol

14. LibWellConvert.sol

15. LibMinting.sol

16. LibWellMinting.sol

17. LibTokenSilo.sol

18. LibWhitelist.sol

19. LibWell.sol

20. LibWellBdv.sol

7

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Beanstalk/pull/378/commits/b28a58d134fb9a53e1a30e9df695ffbd28ecaf2f


2. Basin (Wells):

• Commit ID:

0949cd7d9658a0525c526b9c771a442c65ee204a

• Smart Contracts in scope:

1. Well.sol

2. ConstantProduct.sol

3. ConstantProduct2.sol

4. LibMath.sol

5. GeoEmaAndCumSumSmaPump.sol

Fixed Commit ID: 78d7045a4e6900dfbdc5f1119b202b4f30ff6ab8

1.4 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this assessment. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the contracts’ solidity code and can

quickly identify items that do not follow security best practices. The

following phases and associated tools were used throughout the term of

the assessment:

• Smart contract manual code review and walkthrough.

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing with custom scripts. (Foundry).

• Static Analysis of security for scoped contract, and imported func-

tions manually.

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Basin/commit/0949cd7d9658a0525c526b9c771a442c65ee204a
https://github.com/BeanstalkFarms/Beanstalk/pull/378/commits/78d7045a4e6900dfbdc5f1119b202b4f30ff6ab8


• Testnet deployment (Anvil).

9

EX
EC

UT
IV

E
OV

ER
VI

EW



2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

10

EX
EC

UT
IV

E
OV

ER
VI

EW



2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

11

EX
EC

UT
IV

E
OV

ER
VI

EW



2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

12

EX
EC

UT
IV

E
OV

ER
VI

EW



Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

13

EX
EC

UT
IV

E
OV

ER
VI

EW



2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

14

EX
EC

UT
IV

E
OV

ER
VI

EW



The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

15

EX
EC

UT
IV

E
OV

ER
VI

EW



3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 0 3

16

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) ENCODE TYPE NOT ENFORCED
WHILE WHITELISTING A TOKEN

Informational
(1.9)

ACKNOWLEDGED

(HAL-02) UNNECESARY ELSE STATEMENT
AND DELTAB VARIABLE INITIALIZATION

Informational
(1.9)

SOLVED - 07/17/2023

(HAL-03) GAS INEFFICIENCY: > 0 IN A
UINT256 INSTEAD OF != 0

Informational
(1.9)

ACKNOWLEDGED

17

EX
EC

UT
IV

E
OV

ER
VI

EW



18

FINDINGS & TECH
DETAILS



4.1 (HAL-01) ENCODE TYPE NOT
ENFORCED WHILE WHITELISTING A
TOKEN - INFORMATIONAL (1.9)

Description:

When whitelisting a token with the whitelistTokenWithEncodeType() func-

tion, the encodeType passed by parameter is not checked if it is 0x00 or

0x01. Then, if the beanDenominatedValue() function is called (which is

called every time the bdv has to be calculated, and it is required for

most of the use cases of a token), the tx reverts if the token has an

invalid encodeType. The inconvenience is that the token cannot be used

in the protocol with this incorrectly set parameter.

Code Location:

Listing 1: WhitelistFacet.sol

96 function whitelistTokenWithEncodeType(

97 address token ,

98 bytes4 selector ,

99 uint32 stalkIssuedPerBdv ,

100 uint32 stalkEarnedPerSeason ,

101 bytes1 encodeType

102 ) external payable {

103 LibDiamond.enforceIsOwnerOrContract ();

104 LibWhitelist.whitelistToken(

105 token ,

106 selector ,

107 stalkIssuedPerBdv ,

108 stalkEarnedPerSeason ,

109 encodeType

110 );

111 }

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 2: LibTokenSilo.sol (Line 295)

274 function beanDenominatedValue(address token , uint256 amount)

275 internal

276 view

277 returns (uint256 bdv)

278 {

279 AppStorage storage s = LibAppStorage.diamondStorage ();

280 require(s.ss[token ]. selector != bytes4 (0), "Silo: Token

ë not whitelisted");

281

282 bytes memory callData;

283 if (s.ss[token ]. encodeType == 0x00) {

284 callData = abi.encodeWithSelector(

285 s.ss[token ].selector ,

286 amount

287 );

288 } else if (s.ss[token ]. encodeType == 0x01) {

289 callData = abi.encodeWithSelector(

290 s.ss[token ].selector ,

291 token ,

292 amount

293 );

294 } else {

295 revert("Silo: Invalid encodeType");

296 }

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Proof of Concept:

1. Beanstalk whitelists a well LP token into the protocol

2. A user adds liquidity to the well

3. The user tries to deposit into the Silo the LP tokens previously

received

4. The transaction reverts with Silo: Invalid encodeType

Listing 3: HalbornBeanstalkTest.t.sol (Line 8)

1 function test_vuln_CORE_Whitelist_006 () public {

2 vm.prank(owner);

3 whitelistFacet.whitelistTokenWithEncodeType(wellAdd ,

ë bytes4(keccak256("wellBdv(address ,uint256)")), uint32 (10000) ,

ë uint32 (1), 0x02);

4

5 xAddLiqSimple(alice , bean.balanceOf(alice), weth.balanceOf

ë (alice));

6 vm.startPrank(alice);

7 well.approve(address(siloFacet), well.balanceOf(alice));

8 siloFacet.deposit(wellAdd , well.balanceOf(alice),

ë LibTransfer.From.EXTERNAL);

9 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:H/D:N/Y:N/R:F/S:U (1.9)

Recommendation:

Add a require assertion enforcing the encodeType to be 0x00 or 0x01.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged this finding.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



4.2 (HAL-02) UNNECESARY ELSE
STATEMENT AND DELTAB VARIABLE
INITIALIZATION - INFORMATIONAL (1.9)

Description:

In the EVM, all variables are initially zeros. The LibWellMinting.check

() function does not need to initialize the deltaB variable in the else

condition as it is already defined in the return variables of the function,

and is already set to zero.

Code Location:

Listing 4: LibWellMinting.sol (Line 72)

51 function check(

52 address well

53 ) internal view returns (int256 deltaB) {

54 bytes memory lastSnapshot = LibAppStorage

55 .diamondStorage ()

56 .wellOracleSnapshots[well];

57 // If the length of the stored Snapshot for a given Well

ë is 0,

58 // then the Oracle is not initialized.

59 if (lastSnapshot.length > 0) {

60 (deltaB , ) = twaDeltaB(well , lastSnapshot);

61 } else {

62 deltaB = 0;

63 }

64 deltaB = LibMinting.checkForMaxDeltaB(deltaB);

65 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:H/D:N/Y:N/R:F/S:U (1.9)

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

Consider removing the else condition from the LibWellMinting.check()

function:

Listing 5: LibWellMinting.sol

51 function check(

52 address well

53 ) internal view returns (int256 deltaB) {

54 bytes memory lastSnapshot = LibAppStorage

55 .diamondStorage ()

56 .wellOracleSnapshots[well];

57 // If the length of the stored Snapshot for a given Well

ë is 0,

58 // then the Oracle is not initialized.

59 if (lastSnapshot.length > 0) {

60 (deltaB , ) = twaDeltaB(well , lastSnapshot);

61 }

62

63 deltaB = LibMinting.checkForMaxDeltaB(deltaB);

64 }

Remediation Plan:

SOLVED: The Beanstalk team solved this issue.

Commit ID : 78d7045a4e6900dfbdc5f1119b202b4f30ff6ab8.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/BeanstalkFarms/Beanstalk/commits/78d7045a4e6900dfbdc5f1119b202b4f30ff6ab8


4.3 (HAL-03) GAS INEFFICIENCY: > 0
IN A UINT256 INSTEAD OF != 0 -
INFORMATIONAL (1.9)

Description:

In the ConvertFacet contract, the _depositTokensForConvert() function

uses > 0 to compare if it’s different from 0 instead of using != 0 which

is more gas efficient when used with unsigned integer data types.

Code Location:

Listing 6: ConvertFacet.sol (Line 202)

196 function _depositTokensForConvert(

197 address token ,

198 uint256 amount ,

199 uint256 bdv ,

200 uint256 grownStalk // stalk grown previously by this

ë deposit

201 ) internal returns (int96 stem) {

202 require(bdv > 0 && amount > 0, "Convert: BDV or amount is

ë 0.");

Proof of Concept:

Listing 7: HalbornPoC.sol (Lines 9,14)

4 contract HalbornPoC {

5

6 uint256 x;

7 function printGreater () public {

8 x = 1;

9 if (x > 0) {}

10 }

11

12 function printDifferent () public {

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



13 x = 1;

14 if (x != 0) {}

15 }

16 }

• Using printGreater()

• Using printDifferent()

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:H/D:N/Y:N/R:F/S:U (1.9)

Recommendation:

It is recommended to use != 0 instead of > 0 to compare uint variables.

Listing 8: ConvertFacet.sol (Line 202)

196 function _depositTokensForConvert(

197 address token ,

198 uint256 amount ,

199 uint256 bdv ,

200 uint256 grownStalk // stalk grown previously by this

ë deposit

201 ) internal returns (int96 stem) {

202 require(bdv != 0 && amount != 0, "Convert: BDV or amount

ë is 0.");

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged the issue.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



28

MANUAL TESTING



For the integration of the Wells in the Beanstalk protocol, the next

steps had to be performed:

1. Fork the mainnet running it locally by using Anvil

2. Deploy a Well with a deployment script using the actual

GeoEmaAndCumSmaPump pump contract in the forked environment

3. Update the facets by:

a) Removing with Diamond Cut all the external functions -or the

external functions whose internal functions or libraries- have

changed or have been removed from the mainnet in the new commits

b) Adding with Diamond Cut all the new external functions -or the

external functions whose internal functions or libraries- has

changed or has been added from the mainnet in the new commits

4. Use Foundry for the Unit and Integration testing connected to the

Anvil with the mainnet state and a Well deployed

The assessment mainly focused on the following points:

ENCODE TYPE (test_CORE_Whitelist):

• Making sure the upgrades of the Silo Whitelist are correct, focusing

on the whitelist() function the encodeType parameter that allows

0x01 type for the wellBdv function.

WELL BDV (test_CORE_WellBdv):

• Tracking that the wellBdv() function is correctly implemented when

a Well LP token has been previously whitelisted into Beanstalk.

CONVERTS (test_CORE_Convert):

• Checking that the convertLPToBeans() and convertBeansToLP() func-

tions work as intended in the LibWellConvert library also taking into

account the new two convert types BEANS_TO_WELL_LP, WELL_LP_TO_BEANS

29

MA
NU

AL
TE

ST
IN

G



TWA DELTA B (test_CORETwaDBOracle):

• Checking the Oracle.sol functionality to get the correct TWA Delta

B in any well containing the BEAN token. Furthermore, checking

stepOracle() and totalDeltaB() functions in the Oracle contract.

ENROOT DEPOSIT (test_CORE_Enroot):

• Checking the enrootDeposit() functions are correctly migrated to the

new facet EnrootFacet.sol.

CONSTANT PRODUCT FUNCTIONS (test_WELL):

• Checking that the new changes made within ConstantProduct.sol and

ConstantProduct2.sol WellFunction contracts are correctly imple-

mented.

30

MA
NU

AL
TE

ST
IN

G



31

MA
NU

AL
TE

ST
IN

G



32

AUTOMATED TESTING



6.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of cer-

tain areas of the scoped contracts. Among the tools used was Slither, a

Solidity static analysis framework. After Halborn verified all the con-

tracts in the repository and was able to compile them correctly into their

ABI and binary formats, Slither was run on the all-scoped contracts. This

tool can statically verify mathematical relationships between Solidity

variables to detect invalid or inconsistent usage of the contracts’ ABIs

across the entire code-base.

Slither Results:

BDVFacet.sol

33

AU
TO

MA
TE

D
TE

ST
IN

G



ConvertFacet.sol

WhitelistFacet.sol

34

AU
TO

MA
TE

D
TE

ST
IN

G



SiloFacet.sol

AppStorage.sol

• As a result of the tests carried out with the Slither tool, some

results were obtained and reviewed by Halborn. Based on the results

reviewed, the majority of vulnerabilities were determined to be

false positives.

35

AU
TO

MA
TE

D
TE

ST
IN

G



MythX Results:

• No major issues found by the MythX tool.

36

AU
TO

MA
TE

D
TE

ST
IN

G



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	SCOPE
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof of Concept
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	BVSS
	Recommendation
	Remediation Plan


	MANUAL TESTING
	ENCODE TYPE (test_CORE_Whitelist)
	WELL BDV (test_CORE_WellBdv)
	CONVERTS (test_CORE_Convert)
	TWA DELTA B (test_CORETwaDBOracle)
	ENROOT DEPOSIT (test_CORE_Enroot)
	CONSTANT PRODUCT FUNCTIONS (test_WELL)


	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither Results
	MythX Results



