
Beanstalk BIP-38 Audit Report

Prepared by Cyfrin

Version 2.3

Lead Auditors

Giovanni Di Siena

Carlos Amarante

October 13, 2023

https://cyfrin.io
https://twitter.com/giovannidisiena
https://twitter.com/carlitox477

Contents

1 About Cyfrin 2

2 Disclaimer 2

3 Risk Classification 2

4 Protocol Summary 2

5 Audit Scope 3

6 Executive Summary 3

7 Findings 6
7.1 High Risk . 6

7.1.1 Migration of unripe LP from BEAN:3CRV to BEAN:ETH does not account for recapitalization
accounting error . 6

7.2 Medium Risk . 7
7.2.1 Insufficient validation of new Fertilizer IDs allow for a denial-of-service (DoS) attack on Sea-

sonFacet::gm when above peg, once the last element in the FIFO is paid 7
7.3 Low Risk . 12

7.3.1 Incorrect handling of metadata traits in the attributes of MetadataFacet::uri 12
7.4 Informational . 13

7.4.1 Resetting of withdrawSeasons state was not executed on-chain as part of the BIP-36 upgrade 13
7.4.2 Changes to initialization contracts are not recommended after they are executed on-chain . . 13
7.4.3 Lack of slippage protection when removing liquidity from BEAN:3CRV MetaPool and adding

liquidity to BEAN:ETH Well could result in loss of funds due to sandwich attack 13
7.4.4 LibEthUsdOracle::getEthUsdPrice design changes should be documented 14
7.4.5 Logic in LibFertilizer::push related to (deprecated) intermediate addition of Fertilizer to

FIFO list should be removed . 14
7.4.6 Consider moving the MetadataFacet::uri disclaimer from metadata attributes to the de-

scription . 15
7.4.7 Incorrect comment in MetadataImage::sciNotation should be corrected 15
7.4.8 Continued reference to "Seeds" in InitBipBasinIntegration::init is confusing 15
7.4.9 InitBipBasinIntegration NatSpec title tag is inconsistent with the file/contract name . . . 15
7.4.10 Conditional block in WellPrice::getConstantProductWell can be removed 15
7.4.11 Unsafe cast in WellPrice::getDeltaB . 15
7.4.12 Typo in FertilizerFacet::getMintFertilizerOut NatSpec 16
7.4.13 Typo in comment within LibSilo::_mow . 16

1

1 About Cyfrin

Cyfrin is a Web3 security company dedicated to bringing industry-leading protection and education to our partners
and their projects. Our goal is to create a safe, reliable, and transparent environment for everyone in Web3 and
DeFi. Learn more about us at cyfrin.io.

2 Disclaimer

The Cyfrin team makes every effort to find as many vulnerabilities in the code as possible in the given time but holds
no responsibility for the findings in this document. A security audit by the team does not endorse the underlying
business or product. The audit was time-boxed and the review of the code was solely on the security aspects of
the solidity implementation of the contracts.

3 Risk Classification

Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4 Protocol Summary

Beanstalk is a permissionless algorithmic stablecoin protocol built on Ethereum. The protocol uses a novel dynamic
peg maintenance mechanism to have the price of 1 BEAN (the Beanstalk stablecoin) continuously cross its peg
value of 1 USD without centralization or collateral requirements.

The BIP-38 upgrade specifically involves migration of the BEAN:3CRV LP Tokens that underly the Unripe
BEAN:3CRV token to BEAN:ETH Well LP Tokens.

The main changes introduced in the diff between the two commits referenced in the audit scope include:

• Replaced Curve integration with Wells integration.

• Removed the ability of Beanstalk DAO to arbitrarily add fertilizer by removing Fertilizer-
Facet::addFertilizerOwner.

• Added UnripeFacet::addMigratedUnderlying to allow for liquidity migration.

• Added a requirement to UnripeFacet::chop that there should be an underlyingToken balance to allow
chopping, in order to protect users from accidentally exchanging unripe LP for nothing during migration.

• Updated constant values to match on-chain addresses: C.UNIV3_ETH_USDC_POOL; C.UNIV3_ETH_USDT_POOL;
C.BEANSTALK_PUMP; C.BEAN_ETH_WELL; DepotFacet::PIPELINE.

• Changed how Chainlink USDC and USDT Oracles are integrated into the Beanstalk protocol through Li-
bEthUsdOracle::getEthUsdPrice.

• Fertilizer is now minted using WETH instead of USDC.

• Added InitBipBasinIntegration:

– Updates earned Stalk per BDV per Season for BEAN and urBEAN3CRV.

– Whitelists BEAN:ETH Well LP.

• Added InitMigrateUnripeBean3CrvToBeanEth which initiates the migration process.

2

https://cyfrin.io

• Modified MetadataFacet and MetadataImage.

• Pipeline is now able to receive ETH.

• Depot is now able to receive ETH.

• LibStrings now supports the string representation of int256 values less than zero.

• Removed legacy support for withdrawals in Weather::handleRain.

• BeanstalkPrice::price now considers the price provided by the BEAN:ETH Well and Curve to provide a
weighted average price.

• Replaced Curve integration with Well in multiple protocol components, including:

– LibFertilizer

– LibUnripeConvert

– BDVFacet

5 Audit Scope

Cyfrin conducted an audit of Beanstalk based on the code present in the repository commit hash 12c608a, specif-
ically the diff between this commit hash and c7a20e5 which largely pertains to the BIP-38 migration of the token
underlying unripe LP from BEAN:3CRV MetaPool LP to unripe BEAN:ETH Well LP. Other changes introduced in
the diff between these two commits, since the previous audit performed by Cyfrin, are also considered in the scope
of this audit.

Mitigation remedations have been provided by the Beanstalk Farms team in the commit hash 7606673 contained
within the pull request linked above.

6 Executive Summary

Over the course of 11 days, the Cyfrin team conducted an audit on the Beanstalk BIP-38 smart contracts provided
by Beanstalk Farms. In this period, a total of 16 issues were found.

The BIP-38 migration of the token underlying unripe LP from BEAN:3CRV LP to BEAN:ETH Well LP is
well written and architected. We have verified that suspension of relevant functions will work as intended,
preventing users of the Protocol from losing assets when performing these actions (chop/deposit/enroot/convert)
at the time of upgrade. This has also been tested in the "Interactions with Unripe fail" block of
‘Bean3CrvToBeanEThMigration.test.js‘.

Most changes are clearly documented, although there are certain areas such as the modification to LibEthUsdOr-
acle::getEthUsdPrice that could benefit from additional inline comments. It is also not currently finalized how the
swap from 3CRV to WETH will be performed, whether through a DEX aggregator with MEV protection or via an
OTC swap. It is understood that the BCM will ensure the proper use of slippage parameters when removing/adding
liquidity, and it is essential that this is the case.

Two findings related to the recaptialization of unripe LP have been raised, introduced as a result of these changes.
They should be addressed to mitigate potential denial-of-service attacks on the Beanstalk Sunrise mechanism and
errors in recapitalization accounting.

3

https://github.com/BeanstalkFarms/Beanstalk/tree/12c608a22535e3a1fe379db1153185fe43851ea7
https://github.com/BeanstalkFarms/Beanstalk/tree/c7a20e56a0a6659c09314a877b440198eff0cd81
https://github.com/BeanstalkFarms/Beanstalk/pull/65555
https://github.com/BeanstalkFarms/Beanstalk/commit/76066733bcddb944b9af8f29acf150c02a5b8437
https://github.com/BeanstalkFarms/Beanstalk/pull/655
https://bean.money/
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/test/Bean3CrvToBeanEthMigration.test.js#L83

Summary

Project Name Beanstalk BIP-38

Repository Beanstalk

Commit 12c608a22535. . .

Audit Timeline Sep 12th - Sep 26th

Methods Manual Review

Issues Found

Critical Risk 0

High Risk 1

Medium Risk 1

Low Risk 1

Informational 13

Gas Optimizations 0

Total Issues 16

Summary of Findings

[H-1] Migration of unripe LP from BEAN:3CRV to BEAN:ETH does not account
for recapitalization accounting error

Acknowledged

[M-1] Insufficient validation of new Fertilizer IDs allow for a denial-of-service
(DoS) attack on SeasonFacet::gm when above peg, once the last element in
the FIFO is paid

Resolved

[L-1] Incorrect handling of commas and quotation marks in the attributes of
MetadataFacet::uri

Resolved

[I-01] Resetting of withdrawSeasons state was not executed on-chain as part
of the BIP-36 upgrade

Resolved

[I-02] Changes to initialization contracts are not recommended after they are
executed on-chain

Acknowledged

[I-03] Lack of slippage protection when removing liquidity from BEAN:3CRV
MetaPool and adding liquidity to BEAN:ETH Well could result in loss of funds
due to sandwich attack

Acknowledged

[I-04] LibEthUsdOracle::getEthUsdPrice design changes should be docu-
mented

Resolved

[I-05] Logic in LibFertilizer::push related to (deprecated) intermediate ad-
dition of Fertilizer to FIFO list should be removed

Acknowledged

[I-06] Consider moving the MetadataFacet::uri disclaimer from metadata at-
tributes to the description

Acknowledged

[I-07] Incorrect comment in MetadataImage::sciNotation should be cor-
rected

Resolved

4

https://github.com/BeanstalkFarms/Beanstalk
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7

[I-08] Continued reference to "Seeds" in InitBipBasinIntegration::init is
confusing

Resolved

[I-09] InitBipBasinIntegration NatSpec title tag is inconsistent with the
file/contract name

Resolved

[I-10] Conditional block in WellPrice::getConstantProductWell can be re-
moved

Resolved

[I-11] Unsafe cast in WellPrice::getDeltaB Resolved

[I-12] Typo in FertilizerFacet::getMintFertilizerOut NatSpec Resolved

[I-13] Typo in comment within LibSilo::_mow Resolved

5

7 Findings

7.1 High Risk

7.1.1 Migration of unripe LP from BEAN:3CRV to BEAN:ETH does not account for recapitalization ac-
counting error

Description: The global AppStorage::recapitalized state refers to the dollar amount recapitalized when Fer-
tilizer was bought with USDC and paired with BEAN for BEAN:3CRV LP. When removing this underlying liquidity
and swapping 3CRV for WETH during the migration of unripe LP, it is very likely that the BCM will experience some
slippage. This is more likely to be the case if the swap is made on the open market rather than an OTC deal, but
either way it is likely that the dollar value of the resulting WETH, and hence BEAN:ETH LP, will be less than it was
as BEAN:3CRV before the migration. Currently, UnripeFacet::addMigratedUnderlying updates the BEAN:ETH
LP token balance underlying the unripe LP, completing the migration, but does not account for any changes in the
dollar value as outlined above. Based on the current implementation, it is very likely that the BCM will complete mi-
gration by transferring less in dollar value while the recapitalization status remains the same, causing inconsistency
in LibUnripe::percentLPRecapped and LibUnripe::add/removeUnderlying which are used in the conversion of
urBEAN urBEANETH in LibUnripeConvert. Therefore, the global recapitalized state should be updated to reflect
the true dollar value of recapitalization on completion of the migration.

Impact: Once sufficiently funded by purchasers of Fertilizer, it is possible that recapitalization could be considered
completed with insufficient underlying BEAN:ETH LP. This amounts to a loss of user funds since the true recapi-
talized amount will be less than that specified by C::dollarPerUnripeLP which is used to calculate the total dollar
liability in LibFertilizer::remainingRecapitalization.

Recommended Mitigation: Reassign s.recapitalized to the oracle USD amount of the new BEAN:ETH LP at
the time of migration completion.

function addMigratedUnderlying(address unripeToken, uint256 amount) external payable nonReentrant {
LibDiamond.enforceIsContractOwner();
IERC20(s.u[unripeToken].underlyingToken).safeTransferFrom(

msg.sender,
address(this),
amount

);
LibUnripe.incrementUnderlying(unripeToken, amount);

+ uint256 recapitalized = amount.mul(LibEthUsdOracle.getEthUsdPrice()).div(1e18);
+ require(recapitalized != 0, "UnripeFacet: cannot calculate recapitalized");
+ s.recapitalized = s.recapitalized.add(recapitalized);

}

Beanstalk Farms: This is intentional – the cost of slippage goes to the Unripe LP token holders. This should be
clearly stated in the BIP draft.

Cyfrin: Acknowledged.

6

https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/AppStorage.sol#L485
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/barn/UnripeFacet.sol#L257
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/libraries/LibUnripe.sol#L30-L36
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/C.sol#L190-L192
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/libraries/LibFertilizer.sol#L159-L163

7.2 Medium Risk

7.2.1 Insufficient validation of new Fertilizer IDs allow for a denial-of-service (DoS) attack on Season-
Facet::gm when above peg, once the last element in the FIFO is paid

Description: A Fertilizer NFT can be interpreted as a bond without an expiration date which is to be repaid
in Beans and includes interest (Humidity). This bond is placed in a FIFO list and intended to recapitalize the
$77 million in liquidity stolen during the April 2022 exploit. One Fertilizer can be purchased for 1 USD worth of
WETH: prior to BIP-38, this purchase was made using USDC.

Each fertilizer is identified by an Id that depends on s.bpf, indicating the cumulative amount of Beans paid per
Fertilizer. This value increases each time Sun::rewardToFertilizer is called, invoked by SeasonFacet::gm if the
Bean price is above peg. Therefore, Fertilizer IDs depend on s.bpf at the moment of minting, in addition to the
amount of Beans to be paid.

The FIFO list has following components:

• s.fFirst: Fertilizer Id corresponding to the next Fertilizer to be paid.

• s.fLast: The highest active Fertilizer Id which is the last Fertilizer to be paid.

• s.nextFid: Mapping from Fertilizer Id to Fertilizer id, indicating the next element of a linked list. If an Id
points to 0, then there is no next element.

Methods related to this FIFO list include: LibFertilizer::push: Add an element to the FIFO list. LibFertil-
izer::setNext: Given a fertilizer id, add a pointer to next element in the list LibFertilizer::getNext: Get next
element in the list.

The intended behaviour of this list is to add a new element to its end whenever a new fertilizer is minted with a
new Id. Intermediate addition to the list was formerly allowed only by the Beanstalk DAO, but this functionality has
since been deprecated in the current upgrade with the removal of FertilizerFacet::addFertilizerOwner.

Consequences of replacing BEAN:3CRV MetaPool with the BEAN:ETH Well: Before this upgrade, addition of 0
Fertilizer through LibFertilizer::addFertilizer was impossible due to the dependency on Curve in LibFer-
tilizer::addUnderlying:

7

https://docs.bean.money/almanac/farm/barn
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/sun/SeasonFacet/Sun.sol#L153
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/libraries/LibFertilizer.sol#L45-L51
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/libraries/LibFertilizer.sol#L64-L66
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/AppStorage.sol#L477-L477

// Previous code

function addUnderlying(uint256 amount, uint256 minAmountOut) internal {
//...
C.bean().mint(

address(this),
newDepositedBeans.add(newDepositedLPBeans)

);

// Add Liquidity
uint256 newLP = C.curveZap().add_liquidity(

C.CURVE_BEAN_METAPOOL, // where to add liquidity
[

newDepositedLPBeans, // BEANS to add
0,
amount, // USDC to add
0

], // how much of each token to add
minAmountOut // min lp ampount to receive

); // @audit-ok Does not admit depositing 0 -->
https://etherscan.io/address/0x5F890841f657d90E081bAbdB532A05996Af79Fe6#code#L487,!

// Increment underlying balances of Unripe Tokens
LibUnripe.incrementUnderlying(C.UNRIPE_BEAN, newDepositedBeans);
LibUnripe.incrementUnderlying(C.UNRIPE_LP, newLP);

s.recapitalized = s.recapitalized.add(amount);
}

However, with the change of dependency involved in the Wells integration, this restriction no longer holds:

function addUnderlying(uint256 usdAmount, uint256 minAmountOut) internal {
AppStorage storage s = LibAppStorage.diamondStorage();
// Calculate how many new Deposited Beans will be minted
uint256 percentToFill = usdAmount.mul(C.precision()).div(

remainingRecapitalization()
);
uint256 newDepositedBeans;
if (C.unripeBean().totalSupply() > s.u[C.UNRIPE_BEAN].balanceOfUnderlying) {

newDepositedBeans = (C.unripeBean().totalSupply()).sub(
s.u[C.UNRIPE_BEAN].balanceOfUnderlying

);
newDepositedBeans = newDepositedBeans.mul(percentToFill).div(

C.precision()
);

}

// Calculate how many Beans to add as LP
uint256 newDepositedLPBeans = usdAmount.mul(C.exploitAddLPRatio()).div(

DECIMALS
);

// Mint the Deposited Beans to Beanstalk.
C.bean().mint(

address(this),
newDepositedBeans

);

// Mint the LP Beans to the Well to sync.
C.bean().mint(

address(C.BEAN_ETH_WELL),

8

newDepositedLPBeans
);

// @audit If nothing was previously deposited this function returns 0, IT DOES NOT REVERT
uint256 newLP = IWell(C.BEAN_ETH_WELL).sync(

address(this),
minAmountOut

);

// Increment underlying balances of Unripe Tokens
LibUnripe.incrementUnderlying(C.UNRIPE_BEAN, newDepositedBeans);
LibUnripe.incrementUnderlying(C.UNRIPE_LP, newLP);

s.recapitalized = s.recapitalized.add(usdAmount);
}

Given that the new integration does not revert when attempting to add 0 Fertilizer, it is now possible to add a self-
referential node to the end FIFO list, but only if this is the first Fertilizer NFT to be minted for the current season by
twice calling FertilizerFacet.mintFertilizer(0, 0, 0, mode). The validation performed to prevent duplicate
ids is erroneously bypassed given the Fertilizer amount for the given Id remains zero.

function push(uint128 id) internal {
AppStorage storage s = LibAppStorage.diamondStorage();
if (s.fFirst == 0) {

// Queue is empty
s.season.fertilizing = true;
s.fLast = id;
s.fFirst = id;

} else if (id <= s.fFirst) {
// Add to front of queue
setNext(id, s.fFirst);
s.fFirst = id;

} else if (id >= s.fLast) { // @audit this block is entered twice
// Add to back of queue
setNext(s.fLast, id); // @audit the second time, a reference is added to the same id
s.fLast = id;

} else {
// Add to middle of queue
uint128 prev = s.fFirst;
uint128 next = getNext(prev);
// Search for proper place in line
while (id > next) {

prev = next;
next = getNext(next);

}
setNext(prev, id);
setNext(id, next);

}
}

Despite first perhaps seeming harmless, this element can never be remove unless otherwise overridden:

9

https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/libraries/LibFertilizer.sol#L57-L58

function pop() internal returns (bool) {
AppStorage storage s = LibAppStorage.diamondStorage();
uint128 first = s.fFirst;
s.activeFertilizer = s.activeFertilizer.sub(getAmount(first)); // @audit getAmount(first) would

return 0,!

uint128 next = getNext(first);
if (next == 0) { // @audit next != 0, therefore this conditional block is skipped

// If all Unfertilized Beans have been fertilized, delete line.
require(s.activeFertilizer == 0, "Still active fertilizer");
s.fFirst = 0;
s.fLast = 0;
s.season.fertilizing = false;
return false;

}
s.fFirst = getNext(first); // @audit this gets s.first again
return true; // @audit always returns true for a self-referential node

}

LibFertilizer::pop is used in Sun::rewardToFertilizer which is called through Sun::rewardBeans when fer-
tilizing. This function is called through Sun::stepSun if the current Bean price is above peg. By preventing the last
element from being popped from the list, assuming this element is reached, an infinite loop occurs given that the
while loop continues to execute, resulting in denial-of-service on SeasonFacet::gm when above peg.

The most remarkable detail of this issue is that this state can be forced when above peg and having already been
fully recapitalized. Given that it is not possible to mint additional Fertilizer with the associated Beans, this means
that a DoS attack can be performed on SeasonFacet::gm once recapitalization is reached if the BEAN price is
above peg.

Impact: It is possible to perform a denial-of-service (DoS) attack on SeasonFacet::gm if the Bean price is above
the peg, either once fully recapitalized or when reaching the last element of the Fertilizer FIFO list.

Proof of Concept: This coded PoC can be run by:

1. Creating file Beantalk/protocol/test/POCs/mint0Fertilizer.test.js

2. Navigating to Beantalk/protocol

3. Running yarn test --grep "DOS last fertilizer payment through minting 0 fertilizers"

Recommended Mitigation: Despite being a complex issue to explain, the solution is as simple as replacing > with
>= in LibFertilizer::addFertilizer as below:

10

https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/sun/SeasonFacet/Sun.sol#L132-L150
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/sun/SeasonFacet/Sun.sol#L97
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/sun/SeasonFacet/Sun.sol#L73
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/sun/SeasonFacet/SeasonFacet.sol#L59
https://gist.github.com/carlitox477/1b0dde178288982f4e25d40b9e43e626

function addFertilizer(
uint128 season,
uint256 fertilizerAmount,
uint256 minLP

) internal returns (uint128 id) {
AppStorage storage s = LibAppStorage.diamondStorage();

uint128 fertilizerAmount128 = fertilizerAmount.toUint128();

// Calculate Beans Per Fertilizer and add to total owed
uint128 bpf = getBpf(season);
s.unfertilizedIndex = s.unfertilizedIndex.add(

fertilizerAmount.mul(bpf)
);
// Get id
id = s.bpf.add(bpf);
// Update Total and Season supply
s.fertilizer[id] = s.fertilizer[id].add(fertilizerAmount128);
s.activeFertilizer = s.activeFertilizer.add(fertilizerAmount);
// Add underlying to Unripe Beans and Unripe LP
addUnderlying(fertilizerAmount.mul(DECIMALS), minLP);
// If not first time adding Fertilizer with this id, return

- if (s.fertilizer[id] > fertilizerAmount128) return id;
+ if (s.fertilizer[id] >= fertilizerAmount128) return id; // prevent infinite loop in

`Sun::rewardToFertilizer` when attempting to add 0 Fertilizer, which could DoS `SeasonFacet::gm`
when recapitalization is fulfilled

,!

,!

// If first time, log end Beans Per Fertilizer and add to Season queue.
push(id);
emit SetFertilizer(id, bpf);

}

Beanstalk Farms: Added a > 0 check to the mintFertilizer function in commit hash 4489cb8.

Cyfrin: Acknowledged. The Beanstalk Farms team has opted to add validation in Fertilizer-
Facet::mintFertilizer. This alternative saves more gas compared to the one suggested; however, this issue
should be considered in the future if LibFertilizer::addFertilizer is used anywhere else. This is the case in
FertilizerFacet::addFertilizerOwner but assumedly will not be an issue as the owner would not send this
type of transaction.

11

https://github.com/BeanstalkFarms/Beanstalk/pull/655/commits/4489cb869b1a1f8a2535a04364460c79ffb75b11

7.3 Low Risk

7.3.1 Incorrect handling of metadata traits in the attributes of MetadataFacet::uri

Description: For fully on-chain metadata, external clients expect the URI of a token to contain a base64 en-
coded JSON object that contains the metadata and base64 encoded SVG image. As raised previously, if these
attributes are intented to be utilized as metadata traits then failure to correctly handle the packed encoding of the
attributes variable as an array of JSON objects in MetadataFacet::uri results in non-standard JSON metadata
when subsequently returned, meaning it cannot be fully utilized by external clients.

Impact: External clients such as OpenSea are currently unable to display Beanstalk token metadata traits due to
non-standard JSON formatting.

Recommended Mitigation: Refactor the inline metadata attributes as an array of metadata trait objects, ensuring
the resulting encoded bytes are that of valid JSON.

Beanstalk Farms: Fixed in commit 47fef03.

Cyfrin: Acknowledged.

12

https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/metadata/MetadataFacet.sol#L38-L47
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/metadata/MetadataFacet.sol#L48-L55
https://github.com/BeanstalkFarms/Beanstalk/pull/655/commits/47fef03a37527c839acd4696db08fbf0bbcd5a71

7.4 Informational

7.4.1 Resetting of withdrawSeasons state was not executed on-chain as part of the BIP-36 upgrade

The addition of s.season.withdrawSeasons = 0 to InitBipNewSilo::init does not appear to have been present
in the version executed as part of the BIP-36 upgrade. Therefore, to have the state of Beanstalk accurately reflect
this change, another upgrade should be performed to have this logic executed on-chain.

Beanstalk Farms: Fixed in commit cca6250.

Cyfrin: Acknowledged.

7.4.2 Changes to initialization contracts are not recommended after they are executed on-chain

It is understood that certain modifications to BIP initialization contracts have been made retroactively with the
intention that, if run again, any new deployments of the Beanstalk protocol by replaying this history will reflect the
current state of Beanstalk. One particular modification to InitDiamond::init, setting the stemStartSeason to
zero, while seemingly benign as migration logic in LibSilo appears to be bypassed, would result in underdlow
within LibLegacyTokenSilo::_calcGrownStalkForDeposit when calculating the Season diff. This issue will be
present until InitBipNewSilo::init excutes, setting the stemStartSeason state to the Season in which it is
executed. It is therefore recommended that initialization scripts are ossified after being executed on-chain to
maintain an accurate history of the protocol: its mechanism developments, bugs and related upgrades/mitigations.

Beanstalk Farms: The purpose of such changes is to future proof future deployments of Beanstalk. If some-
one were to deploy a fresh Beanstalk, it is important that the protocol continues to function as expected with all
upgrades already implemented.

The expectation is that a new Beanstalk would be initialized only with InitDiamond and that Beanstalk would
automatically be on the newest version. The other Init contracts are intended strictly to migrate from a previous
version to the next.

The LibLegacyTokenSilo is only used to provide legacy support and migration functionality for Silo V2. This
includes, the MigrationFacet, LegacyClaimWithdrawalFacet and seasonToStem(address token, uint32 sea-
son) in SiloExit. The expectation is that a new Beanstalk would be deployed immediately with the Silo V3
upgrade and thus have no reason to be backwards compatable with Silo V2 or support migration from V2 to V3 in
any capacity.

Cyfrin: Acknowledged.

7.4.3 Lack of slippage protection when removing liquidity from BEAN:3CRV MetaPool and adding liquidity
to BEAN:ETH Well could result in loss of funds due to sandwich attack

Currently, the second and third steps of the Migration Process, as provided in BIP-38 specification, are not included
in the scope of this BIP. The primary risk associated with these steps is the swap of BEAN:3CRV LP Tokens for
BEAN:ETH Well LP Tokens, given the size of the swap to be performed. Sandwiching of the transaction that exe-
cutes this swap could result in loss of funds. Therefore, the use of reasonable slippage parameters is essential to
prevent this. It is understood that the current use of zero slippage parameters within the beanEthMigration.js mi-
gration script when removing liquidity from the MetaPool and adding liquidity to the Well is only intended for testing
purposes. The swap path from 3CRV -> WETH will either be executed manually via the BCM on a DEX aggregator
with MEV protection or via an OTC swap, and the BCM will ensure the proper use of slippage parameters when
removing/adding liquidity. It is essential that this is the case.

Beanstalk Farms: This script is only expected to be used to mock the migration to aid in testing. The expectation
is that it will never be used to execute code on mainnet and thus no slippage parameter is added.

Cyfrin: Acknowledged.

13

https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/init/InitBipNewSilo.sol#L42-L43
https://etherscan.io/address/0xf6c77e64473b913101f0ec1bfb75a386aba15b9e#code
https://github.com/BeanstalkFarms/Beanstalk/pull/655/commits/cca625052179764c930be707a68a43952ec54ddf
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/init/InitDiamond.sol#L62
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/libraries/Silo/LibLegacyTokenSilo.sol#L469
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/init/InitBipNewSilo.sol#L76-L77
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/init/InitBipNewSilo.sol#L76-L77
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/scripts/beanEthMigration.js#L26
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/scripts/beanEthMigration.js#L39

7.4.4 LibEthUsdOracle::getEthUsdPrice design changes should be documented

Before BIP-38, the LibEthUsdOracle::getEthUsdPrice function had the following behavior:

1. If the difference between the Chainlink ETH/USD oracle and the Uniswap ETH/USDC TWAP oracle (consid-
ering a 15-minute window) prices was below 0.5%, then it would return the average of both values. Now, this
difference should be below 0.3%.

2. If the difference between the Chainlink ETH/USD oracle and the Uniswap ETH/USDC TWAP oracle (consid-
ering a 15-minute window) was greater than the difference between the Chainlink ETH/USD oracle and the
Uniswap ETH/USDT TWAP oracle (considering a 15-minute window), then:

• If the difference between the Chainlink ETH/USD oracle and the Uniswap ETH/USDT TWAP oracle
(considering a 15 minute-window) prices was below 2%, it would return the average of these two prices.
Now, this difference should be less than 1%.

• Otherwise, it would return 0, indicating that the oracle is broken or stale. Now, it returns the Chainlink
ETH/USD oracle price, assuming it is correct.

3. Otherwise:

• If the difference between the Chainlink ETH/USD oracle and the Uniswap ETH/USDC TWAP oracle
(considering a 15-minute window) prices was below 2%, it would return the average of these two prices.
Now, this difference should be less than 1%.

• Otherwise, it would return 0, indicating that the oracle is broken or stale. Now, it returns the Chainlink
ETH/USD oracle price, assuming it is correct.

In essence, this function now assumes that the Chainlink ETH/USD price is correct as long as it is not stale or
broken (if it returns 0). In cases where the difference between this price and the Uniswap ETH/USDC TWAP
oracle price or Uniswap ETH/USDT TWAP oracle price is outside certain thresholds, it considers and averages
with one of these values. Previously, if this difference was not within certain bounds, the oracle was considered to
be broken.

Beanstalk Farms: This change was actually made before BIP-37 was deployed, but this modification was omitted
from the previous Cyfrin audit. Thus, no functionality in getEthUsdPrice changed as a part of BIP-38.

The comments in LibEthUsdOracle were not correct and have been updated in commit 968f783.

Cyfrin: Acknowledged. Comments now match the code's intention.

7.4.5 Logic in LibFertilizer::push related to (deprecated) intermediate addition of Fertilizer to FIFO list
should be removed

Intermediate addition to the FIFO list was formerly allowed only by the Beanstalk DAO, but this functionality has
since been deprecated in the current upgrade with the removal of FertilizerFacet::addFertilizerOwner. Con-
sequently, the corresponding logic in LibFertilizer::push should be removed as this now represents unreach-
able code.

Beanstalk Farms: the push(...) function is still used internally here.

The highlighted segment is not used reachable anymore, but in the case where the humidity is changed for some
reason, it could again be reached. For this reason, the decision was made to leave it in.

Cyfrin: Acknowledged.

14

https://github.com/BeanstalkFarms/Beanstalk/pull/655/commits/968f783d3d062b93f9f692accc9e7ad60d4f1ab6
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/libraries/LibFertilizer.sol#L139-L147
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/libraries/LibFertilizer.sol#L60

7.4.6 Consider moving the MetadataFacet::uri disclaimer from metadata attributes to the description

The disclaimer within MetadataFacet::uri currently resides at the end of the JSON attributes; however, this may
be better placed within the metadata description instead.

Beanstalk Farms: The disclaimer placement was largely inspired by Uniswap V3’s NFT and thus, feel that the
attribute section is an adequate place to keep it.

Cyfrin: Acknowledged.

7.4.7 Incorrect comment in MetadataImage::sciNotation should be corrected

MetadataImage::sciNotation is intended to convert an input Stem to its string representation, using scientific
notation if the value is greater than 1e5. Related comments referencing 1e7 as the threshold are incorrect and so
should be modified to 1e5.

Beanstalk Farms: Fixed in commit 81e452e.

Cyfrin: Acknowledged.

7.4.8 Continued reference to "Seeds" in InitBipBasinIntegration::init is confusing

With the deprecation of the "Seeds" terminology, continued reference is confusing and all instances should be
updated to instead refer to the earned Stalk per BDV per Season.

Beanstalk Farms: Updated names in commit ba1d42b.

7.4.9 InitBipBasinIntegration NatSpec title tag is inconsistent with the file/contract name

The title tag of the InitBipBasinIntegration NatSpec is inconsistent with the file/contract name and should be
updated to match.

Beanstalk Farms: Fixed in commit c03f635.

Cyfrin: Acknowledged.

7.4.10 Conditional block in WellPrice::getConstantProductWell can be removed

The else block in WellPrice::getConstantProductWell, which handles the case when it is not possible to de-
termine a price for Bean, is not necessary and can be removed as the default value of the pool.price is already
zero.

Beanstalk Farms: Removed in commit 8aae31d.

Cyfrin: Acknowledged.

7.4.11 Unsafe cast in WellPrice::getDeltaB

While not likely to overflow, there is an unsafe cast in WellPrice::getDeltaB which could be replaced with a safe
cast.

Beanstalk Farms: Fixed in commit ff742a6.

15

https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/metadata/MetadataFacet.sol#L46
https://opensea.io/assets/ethereum/0xc36442b4a4522e871399cd717abdd847ab11fe88/528320
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/metadata/MetadataImage.sol#L539
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/metadata/MetadataImage.sol#L538
https://github.com/BeanstalkFarms/Beanstalk/commit/81e452e41c2533dfc49543dc70fba15ed3c6cc2f
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/init/InitBipBasinIntegration.sol#L31-L33
https://github.com/BeanstalkFarms/Beanstalk/pull/655/commits/ba1d42bc9159881143c5f23ab03a7ba8078bd4b0
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/init/InitBipBasinIntegration.sol#L17
https://github.com/BeanstalkFarms/Beanstalk/pull/655/commits/c03f635ef655eb80a2f6a270c41f19bcbd4a66ad
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/ecosystem/price/WellPrice.sol#L64-L67
https://github.com/BeanstalkFarms/Beanstalk/pull/655/commits/8aae31d683aeec50ccbc17985701b46223cc0a1d
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/ecosystem/price/WellPrice.sol#L97
https://github.com/BeanstalkFarms/Beanstalk/pull/655/commits/ff742a6f5b0b166df988a2422e475d314b948fc9

7.4.12 Typo in FertilizerFacet::getMintFertilizerOut NatSpec

The NatSpec of FertilizerFacet::getMintFertilizerOut currently refers to Fertilizer as Fertilize which
should be corrected.

Beanstalk Farms: Fixed in commit 373c094.

Cyfrin: Acknowledged.

7.4.13 Typo in comment within LibSilo::_mow

The following typo in LibSilo::_mow should be corrected:

- //sop stuff only needs to be updated once per season
- //if it started raininga nd it's still raining, or there was a sop
+ // sop stuff only needs to be updated once per season
+ // if it started raining and it's still raining, or there was a sop

Beanstalk Farms: Fixed in commit d27567c.

Cyfrin: Acknowledged.

16

https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/beanstalk/barn/FertilizerFacet.sol#L108
https://github.com/BeanstalkFarms/Beanstalk/pull/655/commits/373c0948cce9730446111a943a4fd96dabd90025
https://github.com/BeanstalkFarms/Beanstalk/blob/12c608a22535e3a1fe379db1153185fe43851ea7/protocol/contracts/libraries/Silo/LibSilo.sol#L351-L352
https://github.com/BeanstalkFarms/Beanstalk/pull/655/commits/d27567c5f84bf07d604397f4d4549570ac9fb8c4

	About Cyfrin
	Disclaimer
	Risk Classification
	Protocol Summary
	Audit Scope
	Executive Summary
	Findings
	High Risk
	Migration of unripe LP from BEAN:3CRV to BEAN:ETH does not account for recapitalization accounting error

	Medium Risk
	Insufficient validation of new Fertilizer IDs allow for a denial-of-service (DoS) attack on SeasonFacet::gm when above peg, once the last element in the FIFO is paid

	Low Risk
	Incorrect handling of metadata traits in the attributes of MetadataFacet::uri

	Informational
	Resetting of withdrawSeasons state was not executed on-chain as part of the BIP-36 upgrade
	Changes to initialization contracts are not recommended after they are executed on-chain
	Lack of slippage protection when removing liquidity from BEAN:3CRV MetaPool and adding liquidity to BEAN:ETH Well could result in loss of funds due to sandwich attack
	LibEthUsdOracle::getEthUsdPrice design changes should be documented
	Logic in LibFertilizer::push related to (deprecated) intermediate addition of Fertilizer to FIFO list should be removed
	Consider moving the MetadataFacet::uri disclaimer from metadata attributes to the description
	Incorrect comment in MetadataImage::sciNotation should be corrected
	Continued reference to "Seeds" in InitBipBasinIntegration::init is confusing
	InitBipBasinIntegration NatSpec title tag is inconsistent with the file/contract name
	Conditional block in WellPrice::getConstantProductWell can be removed
	Unsafe cast in WellPrice::getDeltaB
	Typo in FertilizerFacet::getMintFertilizerOut NatSpec
	Typo in comment within LibSilo::_mow

