
Beanstalk -
Pipeline

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: October 24th, 2022 - November 11th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 6

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) IMPROPER MEMORY ACCESS - MEDIUM 13

Description 13

Code Location 13

Risk Level 13

Proof Of Concept 13

Recommendation 14

Remediation Plan 15

3.2 (HAL-02) IMPLEMENTATION IS NOT RESISTANT TO SELECTOR COLLUSION -

LOW 16

Description 16

Code Location 16

Risk Level 17

Recommendation 17

Remediation Plan 17

3.3 (HAL-03) pasteAdvancedBytes REVERTS IF NO DATA IS RETURNED -

LOW 18

1

Description 18

Code Location 18

Risk Level 19

Proof Of Concept 19

Recommendation 21

Remediation Plan 21

3.4 (HAL-04) OUTDATED SOLIDITY VERSION - INFORMATIONAL 22

Description 22

Risk Level 22

Recommendation 22

Remediation Plan 22

3.5 (HAL-05) REDUNDANT PAYABLE DEFINITION - INFORMATIONAL 23

Description 23

Code Location 23

Risk Level 23

Recommendation 24

Remediation Plan 24

3.6 (HAL-06) USE CUSTOM ERRORS INSTEAD OF REVERT STRINGS TO SAVE

GAS - INFORMATIONAL 25

Description 25

Risk Level 25

Recommendation 25

Remediation Plan 25

3.7 (HAL-07) MISSING/INCOMPLETE NATSPEC COMMENTS - INFORMATIONAL

26

Description 26

Code Location 26

2

Risk Level 26

Recommendation 26

Remediation Plan 26

3.8 (HAL-08) REDUNDANT SENDER PARAMETER - INFORMATIONAL 27

Description 27

Code Location 27

Risk Level 27

Recommendation 27

Remediation Plan 28

3.9 (HAL-09) OPTIMIZE UNSIGNED INTEGER COMPARISON - INFORMATIONAL

29

Description 29

Code Location 29

Risk Level 29

Recommendation 29

Remediation Plan 30

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 26/10/2022 Luis Buendia

0.2 Document Additions 06/11/2022 Gokberk Gulgun

0.3 Document Additions 10/11/2022 Luis Buendia

0.4 Draft Review 11/11/2022 Gabi Urrutia

1.0 Remediation Plan 11/13/2022 Luis Buendia

1.1 Remediation Plan Review 11/15/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

Luis Buendia Halborn Luis.Buendia@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Gokberk.Gulgun@halborn.com
mailto:Luis.Buendia@halborn.com

5

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Beanstalk engaged Halborn to conduct a security audit on their smart

contracts beginning on October 24th, 2022 and ending on November 11th,

2022. The security assessment was scoped to the smart contracts provided

to the Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were accepted by

by the Beanstalk team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

6

EX
EC

UT
IV

E
OV

ER
VI

EW

• Research into architecture and purpose.

• Smart contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/func-

tions. (solgraph)

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing by custom scripts.

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Dynamic Analysis and test coverage. (Foundry)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

IN-SCOPE :

PULL REQUEST

01f61ad7e4954d01bc718a9f82c8a833c63ee3e9

The next commit has been added to the audit to reflect the final version

that will be deployed.

e5da2c5304a6445242f733ad5bc9a56f9b0396369

ADDITIONAL COMMIT IDS :

bf81f2bd1c4d0f27b6ae1c0c12732dd6c79ded6c

256d83162687eed4d589bbf24e0a61a590c11326

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Beanstalk/pull/103
https://github.com/BeanstalkFarms/Beanstalk/commit/01f61ad7e4954d01bc718a9f82c8a833c63ee3e9
https://github.com/BeanstalkFarms/Beanstalk/commit/e5da2c5304a6445242f733ad5bc9a56f9b0396369
https://github.com/BeanstalkFarms/Beanstalk/commit/bf81f2bd1c4d0f27b6ae1c0c12732dd6c79ded6c
https://github.com/BeanstalkFarms/Beanstalk/commit/256d83162687eed4d589bbf24e0a61a590c11326

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 2 6

IM
PA
CT

LIKELIHOOD

(HAL-02) (HAL-01)

(HAL-03)

(HAL-04)
(HAL-05)
(HAL-06)
(HAL-07)
(HAL-08)
(HAL-09)

10

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - IMPROPER MEMORY ACCESS Medium RISK ACCEPTED

HAL02 - IMPLEMENTATION IS NOT
RESISTANT TO SELECTOR COLLUSION

Low RISK ACCEPTED

HAL03 - pasteAdvancedBytes REVERTS
IF NO DATA IS RETURNED

Low RISK ACCEPTED

HAL04 - OUTDATED SOLIDITY VERSION Informational ACKNOWLEDGED

HAL05 - REDUNDANT PAYABLE DEFINITON Informational ACKNOWLEDGED

HAL06 - USE CUSTOM ERRORS INSTEAD
OF REVERT STRINGS TO SAVE GAS

Informational ACKNOWLEDGED

HAL07 - MISSING/INCOMPLETE NATSPEC
COMMENTS

Informational ACKNOWLEDGED

HAL08 - REDUNDANT SENDER PARAMETER Informational ACKNOWLEDGED

HAL09 - OPTIMIZE UNSIGNED INTEGER
COMPARISON

Informational ACKNOWLEDGED

11

EX
EC

UT
IV

E
OV

ER
VI

EW

12

FINDINGS & TECH
DETAILS

3.1 (HAL-01) IMPROPER MEMORY
ACCESS - MEDIUM

Description:

The getEthValue function of the Pipeline.sol contract tries to get the

last 32 bytes of the received byte stream. However, if this value is not

set, the function will access the next 32 bytes of memory and take the

value as if it were the ether that the user wanted to use in this call.

Code Location:

protocol/contracts/pipeline/Pipeline.sol

Listing 1: (Line 111)

109 function getEthValue(bytes calldata advancedData) private pure

ë returns (uint256 value) {

110 if (advancedData [1] == 0x00) return 0;

111 assembly { value := calldataload(sub(add(advancedData.offset ,

ë advancedData.length), 32))}

112 }

Risk Level:

Likelihood - 3

Impact - 3

Proof Of Concept:

The following code snippet produces the behavior described in the source

code.

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/BeanstalkFarms/Beanstalk/blob/pipeline/protocol/contracts/pipeline/Pipeline.sol#L111

Listing 2

1 function testMemoryOutOfBound () public {

2 AdvancedPipe [] memory p = new AdvancedPipe [](1);

3 p[0]. advancedData = new bytes (32);

4 p[0]. advancedData [1] = 0x01;

5 p[0]. advancedData [0] = 0x00;

6 p[0]. target = address(mock);

7 bytes [] memory r = pipeline.advancedPipe(p);

8 }

As specified in the screenshot below, the transaction reverts with an

OutOfFund error when trying to send the ether specified on the value

parameter.

Recommendation:

Control the length and offset value to avoid loading memory values out

of the bytes received as input parameter. When using assembly, it is

important to control memory accesses, as unexpected behaviors with serious

security risks are possible.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

RISK ACCEPTED: The Beanstalk team accepted the risk of this finding. They

stated that:

• It is caused by an improper off-chain encoding.

• It results in a potential lose of funds only for the user.

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) IMPLEMENTATION IS NOT
RESISTANT TO SELECTOR COLLUSION -
LOW

Description:

During the code review, It has been noticed that there is no white-listing

on the selectors. In the solidity, Multiple functions can have the same

signature. For example, these two functions have the same signature:

• gasprice_bit_ether(int128)

• transferFrom(address,address,uint256)

Code Location:

protocol/contracts/pipeline/Pipeline.sol

Listing 3

1 function _farm(bytes calldata data) private returns (bytes

ë memory result) {

2 bytes4 selector; bool success;

3 assembly { selector := calldataload(data.offset) }

4 address facet = LibFunction.facetForSelector(selector);

5 (success , result) = facet.delegatecall(data);

6 LibFunction.checkReturn(success , result);

7 }

8

9 // delegatecall a Beanstalk function using memory data

10 function _farmMem(bytes memory data) private returns (bytes

ë memory result) {

11 bytes4 selector; bool success;

12 assembly { selector := mload(add(data , 32)) }

13 address facet = LibFunction.facetForSelector(selector);

14 (success , result) = facet.delegatecall(data);

15 LibFunction.checkReturn(success , result);

16 }

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.4byte.directory/signatures/?bytes4_signature=0x23b872dd
https://github.com/BeanstalkFarms/Beanstalk/pull/103/files#diff-2bb489f7b0d9f2359450f964dd25369424766b322801681edb8c06ee69afaf0cR38

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

Consider adding whitelist in function selectors.

Remediation Plan:

RISK ACCEPTED: The Beanstalk team accepted the risk of this finding. They

stated that:

• It is caused by an improper off-chain encoding

• It results in a potential lose of funds only for the user.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) pasteAdvancedBytes
REVERTS IF NO DATA IS RETURNED - LOW

Description:

The pasteAdvancedBytes function in the LibFunction.sol contract attempts

to copy the returnData to the pastedData variable. However, if returnData

does not match with callData, the functions revert without handling the

error or providing a proper message.

Code Location:

protocol/contracts/libraries/LibFunction.sol

Listing 4: (Line 113)

107 function pasteAdvancedBytes(

108 bytes memory callData ,

109 bytes [] memory returnData ,

110 bytes32 copyParams

111) internal view returns (bytes memory pastedData) {

112 // Shift `copyParams ` right 22 bytes to insolated

ë reduceDataIndex

113 bytes memory copyData = returnData[uint256 ((copyParams <<

ë 16) >> 176)];

114 pastedData = paste32Bytes(

115 copyData ,

116 callData ,

117 uint256 ((copyParams << 96) >> 176), // Isolate

ë copyIndex

118 uint256 ((copyParams << 176) >> 176) // Isolate

ë pasteIndex

119);

120 }

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/BeanstalkFarms/Beanstalk/blob/pipeline/protocol/contracts/libraries/LibFunction.sol#L113

Risk Level:

Likelihood - 2

Impact - 2

Proof Of Concept:

The following code snippet produces the behavior described in the source

code.

Listing 5

1 function testPasteBytesError () public {

2 bytes2 prebytes = 0x0101;

3 uint80 a = 1;

4 uint80 b = 2;

5 uint64 c = 3;

6 string memory d = 'wololo ';

7 bytes4 e = 0x0a0b0c0d;

8 bool f = false;

9 bytes memory data = abi.encodePacked(prebytes ,a,b,c,d,e,f);

10 AdvancedPipe [] memory p = new AdvancedPipe [](1);

11 p[0]. advancedData = data;

12 p[0]. target = address(mock);

13 bytes [] memory r = pipeline.advancedPipe(p);

14 }

For clarity, some logs have been added to the console with the different

parameter values when entering the pastedData function. The following

screenshot shows the tracking when reverting, as well as the values.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

The modified source code that matches the screenshot above is below.

Listing 6

1 function pasteAdvancedBytes(

2 bytes memory callData ,

3 bytes [] memory returnData ,

4 bytes32 copyParams

5) internal view returns (bytes memory pastedData) {

6 // Shift `copyParams ` right 22 bytes to insolated

ë reduceDataIndex

7 console.log(returnData.length);

8 console.logBytes(returnData [0]);

9 console.logBytes(callData);

10 console.logBytes32(copyParams);

11 console.log(uint256 ((copyParams << 16) >> 176));

12 bytes memory copyData = returnData[uint256 ((copyParams << 16)

ë >> 176)];

13 pastedData = paste32Bytes(

14 copyData ,

15 callData ,

16 uint256 ((copyParams << 96) >> 176), // Isolate copyIndex

17 uint256 ((copyParams << 176) >> 176) // Isolate pasteIndex

18);

19 }

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Validate input parameters to avoid reverting under unexpected conditions.

For this case, if the index to be accessed is greater than or equal to

the length of the byte array, revert instead of trying to access it. Or

handle the error to continue execution.

Remediation Plan:

RISK ACCEPTED: The Beanstalk team accepted the risk of this finding. They

stated that:

• It is caused by an improper off-chain encoding

• It results in a potential lose of funds only for the user.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) OUTDATED SOLIDITY
VERSION - INFORMATIONAL

Description:

The current version of Solidity is outdated. The system uses version

0.7.6. This version is known to be risky, as it still allows overflow

issues when performing basic arithmetic operations. But the feature that

is more interesting is the new Memory Safe for inline assembly.

This feature was introduced in Solidity version 0.8.16. This helps to

respect Solidity’s memory model while using inline assembly Yul code.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Update to a robust Solidity version that offers more security features

and can help protect and optimize the code. Reference, solidity documen-

tation.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged the finding.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://docs.soliditylang.org/en/v0.8.16/assembly.html#memory-safety
https://docs.soliditylang.org/en/v0.8.16/assembly.html#memory-safety

3.5 (HAL-05) REDUNDANT PAYABLE
DEFINITION - INFORMATIONAL

Description:

In the Pipeline contract, the multiPipe function makes a list of calls

to external functions without sending ether. The function is marked as

a payable. Adding payable actually decreases the compiled bytecode size

of your functions. Because without payable, the compiler needs to verify

that the msg.value of the transaction is equal to 0 and will add the

following opcode snippet to your bytecode.

Code Location:

protocol/contracts/pipeline/Pipeline.sol

Listing 7

1 function multiPipe(Pipe[] calldata pipes)

2 external

3 payable

4 override

5 returns (bytes [] memory results)

6 {

7 results = new bytes [](pipes.length);

8 for (uint256 i = 0; i < pipes.length; i++) {

9 results[i] = _pipe(pipes[i].target , pipes[i].data , 0);

10 }

11 }

Risk Level:

Likelihood - 1

Impact - 1

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/BeanstalkFarms/Beanstalk/pull/103/files#diff-2bb489f7b0d9f2359450f964dd25369424766b322801681edb8c06ee69afaf0cR38

Recommendation:

Remove payable from the function.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged the finding.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) USE CUSTOM ERRORS
INSTEAD OF REVERT STRINGS TO SAVE
GAS - INFORMATIONAL

Description:

Custom errors are available from Solidity version 0.8.4. Custom errors

save ~50 gas each time they are hit by avoiding having to allocate and

store the revert string. Not defining strings also saves deployment gas.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider replacing all revert strings with custom errors.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged the finding.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://blog.soliditylang.org/2021/04/21/custom-errors/#errors-in-depth
https://blog.soliditylang.org/2021/04/21/custom-errors/#errors-in-depth

3.7 (HAL-07) MISSING/INCOMPLETE
NATSPEC COMMENTS - INFORMATIONAL

Description:

Functions are missing @param for some of their parameters. Since Nat-

Spec is an important part of the code documentation, this affects the

understandability, auditability, and usability of the code.

Code Location:

Contracts

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider adding full NatSpec comments so that all functions have full

code documentation for future use.

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged the finding.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/BeanstalkFarms/Beanstalk/pull/103/files#diff-6679d3aedfacfb4e17351147dcfcb07e8cc9810456a93e353f12faf037ac7057

3.8 (HAL-08) REDUNDANT SENDER
PARAMETER - INFORMATIONAL

Description:

The sender == msg.sender check is redundant. It is not used in the

transferDeposit function.

Code Location:

protocol/contracts/pipeline/Pipeline.sol

Listing 8

1 function transferDeposit(

2 address sender ,

3 address recipient ,

4 address token ,

5 uint32 season ,

6 uint256 amount

7) external payable returns (uint256 bdv) {

8 require(sender == msg.sender , "invalid sender");

9 bdv = beanstalk.transferDeposit(msg.sender , recipient ,

ë token , season , amount);

10 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider removing the redundant variable.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/BeanstalkFarms/Beanstalk/pull/103/files#diff-2bb489f7b0d9f2359450f964dd25369424766b322801681edb8c06ee69afaf0cR38

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged the finding.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 (HAL-09) OPTIMIZE UNSIGNED
INTEGER COMPARISON - INFORMATIONAL

Description:

The check != 0 costs less gas compared to > 0 for unsigned integers in

require statements with the optimizer enabled. While it may seem like >

0 is cheaper than !=0, this is only true without the optimizer enabled

and outside a require statement. If the optimizer is enabled on 10k, and

it is on a require statement, it would be more gas efficient.

Code Location:

Listing 9

1 modifier withEth () {

2 if (msg.value > 0) s.isFarm = 2;

3 _;

4 if (msg.value > 0) {

5 s.isFarm = 1;

6 LibEth.refundEth ();

7 }

8 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Change > 0 compared to != 0.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

ACKNOWLEDGED: The Beanstalk team acknowledged the finding.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Proof Of Concept
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Proof Of Concept
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

