
Beanstalk: A Permissionless Fiat Stablecoin Protocol

Publius Beanstalk Farms
beanstalk.publius@protonmail.com beanstalkfarms@protonmail.com

bean.money

Published: August 6, 2021

Modified: December 14, 2023
Whitepaper Version: 2.7.0

Code Version: 2.7.01

“A national debt if it is not excessive will be to us a national blessing; it will be powerfull cement
of our union.”

- Alexander Hamilton, Letter to Robert Morris, April 30, 17812

Abstract

Financial applications built on decentralized, permissionless computer networks, collec-
tively referred to as decentralized finance (DeFi), often require a “stablecoin”: a network-
native asset with sufficiently low volatility in value relative to an arbitrary value peg (e.g.,
1 US Dollar (USD, $), 100 Satoshis and 1 oz of Gold). To date, flawed stablecoin imple-
mentations sacrifice the main benefits of trustless computing by requiring a custodian or
limit their potential supply and utility by imposing collateral requirements, and suffer
from noncompetitive carrying costs. A stablecoin that does not compromise on decentral-
ization nor require collateral, has competitive carrying costs, and trends toward more
stability and liquidity, will unlock the potential of DeFi. We propose an Ethereum3-
native, fiat stablecoin protocol that issues an ERC-20 Standard4 token that fulfills these
requirements. A decentralized autonomous organization (DAO) governed by a variable
supply, yield generating token simultaneously provides security, dampens price volatility
and encourages consistent liquidity growth. Beanstalk uses a decentralized credit facility,
network-native price oracle, variable supply and self-adjusting interest rate, to regularly
cross the stablecoin price over its value peg without requiring action from users.

1 github.com/BeanstalkFarms/Beanstalk
2 founders.archives.gov/documents/Hamilton/01-02-02-1167
3 ethereum.org
4 ethereum.org/en/developers/docs/standards/tokens/erc-20

mailto:beanstalk.publius@protonmail.com
mailto:beanstalkfarms@protonmail.com
https://bean.money/
https://github.com/BeanstalkFarms/Beanstalk
https://github.com/BeanstalkFarms/Beanstalk
http://founders.archives.gov/documents/Hamilton/01-02-02-1167
http://ethereum.org
http://ethereum.org/en/developers/docs/standards/tokens/erc-20

Table of Contents

1 Introduction . 5

1.1 Convertible Stablecoins . 5

1.2 Non-convertible Stablecoins . 6

1.3 Beanstalk . 7

2 Previous Work . 7

3 Farm . 8

4 Sun . 8

5 Silo . 10

5.1 The Stalk System . 10

5.2 Deposit Whitelist . 10

5.3 Deposits, Withdrawals, Transfers and Conversions 11

5.4 Calculating Stalk and Seeds . 11

5.5 Governance . 13

5.5.1 Participation . 13

5.5.2 Voting Period . 13

5.5.3 Pause . 14

5.5.4 Beanstalk Improvement Proposals 14

5.5.5 Beanstalk Community Multisig 14

6 Field . 14

6.1 Soil . 14

6.2 Pods . 15

6.3 Temperature . 15

7 Barn . 15

7.1 Fertilizer . 15

7.2 Humidity . 17

7.3 Recapitalization . 17

7.3.1 Available Fertilizer . 18

7.3.2 Revitalized Stalk and Seeds 18

7.3.3 Unripe Assets . 19

7.3.4 Ripe Assets . 19

7.3.5 Chopping . 20

8 Peg Maintenance . 21

8.1 Ideal Equilibrium . 22

8.2 Decentralized Price Oracle . 22

8.3 Debt Level . 23

8.4 Position . 24

8.5 Direction . 24

8.6 Acceleration . 24

8.7 Demand for Soil . 25

8.8 Current State . 27

8.9 Optimal State . 27

8.10 Bean Supply . 27

8.11 Soil Supply . 28

8.12 Temperature . 29

8.12.1 Maximum Temperature . 29

8.12.2 Morning . 31

8.13 Flood . 31

9 Market . 31

10 Depot . 32

11 Economics . 32

11.1 Ownership Concentration . 32

11.2 Strong Credit . 32

11.3 Marginal Rate of Substitution . 32

11.4 Low Friction . 32

11.5 Equilibrium . 33

11.6 Incentives . 33

12 Risk . 33

13 Future Work . 36

14 Appendix . 37

14.1 Current Parameters . 37

14.2 Deposit Whitelist . 38

14.2.1 . 38

14.2.2 Φ . 38

14.2.3 z . 39

14.2.4 zΘ . 39

14.2.5 Θ . 39

14.3 Former Governance . 41

14.4 Convert Whitelist . 42

14.4.1 λ → λ . 42

14.4.2 → Φ . 42

14.4.3 Φ → . 43

14.4.4 z → zΘ . 43

14.4.5 zΘ → z . 43

14.4.6 → Θ . 44

14.4.7 Θ → . 44

14.5 Barn . 45

14.5.1 Old . 45

14.5.2 Old BEAN:ETH Uniswap V2 LP Tokens (ℶ) 45

14.5.3 Old BEAN:3CRV Curve LP Tokens (ℸ) 46

14.5.4 Old BEAN:LUSD Curve LP Tokens (ג) 47

14.6 Minting Whitelist . 48

14.6.1 Φ . 48

14.6.2 Θ . 48

14.7 Flood Whitelist . 50

14.7.1 Φ . 50

14.8 Market . 51

14.8.1 Pods . 51

14.8.1.1 Pod Orders . 51

14.8.1.2 Pod Listings . 51

14.8.1.3 Clearance . 52

14.8.1.4 Future Work . 52

14.9 Depot . 53

14.9.1 Curve . 53

14.9.2 Pipeline . 53

14.10 Fundraisers . 54

14.10.1 Trail of Bits Audit . 54

14.10.2 Omniscia Audit . 54

14.10.3 Omniscia Retainer . 54

14.11 Glossary . 55

14.11.1 Terms . 55

14.11.2 Latin Alphabet Variables . 58

14.11.3 Mathfrak Style Latin Alphabet Variables 61

14.11.4 Greek Alphabet Variables . 62

14.11.5 Glyph Variant Greek Alphabet Variables 63

14.11.6 Hebrew Alphabet Variables 64

14.11.7 Symbol Variables . 64

14.12 Whitepaper Version History . 65

1 Introduction

Decentralized computer networks that run on open source, permissionless protocols (e.g., Bitcoin5

and Ethereum) present the next economic and technological frontiers: trustless goods and services.
Instead of requiring users to trust (1) a rent-seeking third party to write secure code, run it on secure
computer servers and perform fair system administration, or (2) concentrated risk-taking counter-
parties, trustless technology brings control back to users. Anyone can verify the security, authenticity
and policies of open source software for themselves. Any computer with an internet connection can
use and participate in maintenance of permissionless networks. Protocol-native financial incentives
encourage participation in network maintenance. Diverse sets of users and network maintenance par-
ticipants remove concentrated counterparty risk, which creates decentralization. The combination
of permissionlessness, sound economics and decentralization creates censorship resistance, which is
fundamental to trustlessness. Potential applications built on top of well designed trustless networks
are infinite.

A key promise of trustless computer networks is the widespread use of financial goods and services
without the need for trust-providing, rent-seeking central authorities, or concentrated counterparties.
However, as blockchains that support trustless networks are adopted, the values of their native assets
(e.g., Bitcoin and Ether (ETH)) change radically. To date, the practicality of using DeFi technologies
for real economic activity is limited by the lack of a trustless network-native asset with competitive
carrying costs, low-volatility endogenous value and deep liquidity.

A stablecoin protocol generates a fungible network-native asset and attempts to keep its price volatil-
ity sufficiently low relative to an arbitrary value peg. Stablecoin utility is a function of trustlessness,
carrying costs, stability and liquidity. A stablecoin’s trustlessness, carrying costs, stability and liq-
uidity are primarily functions of the source of its value. Current implementations fail to deliver a
stablecoin that is (1) sufficiently decentralized and permissionless, (2) unrestricted by collateral re-
quirements and their associated noncompetitive carrying costs, (3) sufficiently low in price volatility
relative to its value peg and (4) highly liquid, due to a lack of endogenous value creation.

1.1 Convertible Stablecoins

Non-network-native exogenous value convertible stablecoin protocols (e.g., US Dollar Coin6 (USDC),
Tether7 (USDT), Wrapped Bitcoin,8 and RenBTC9) issue stablecoins they claim are collateralized
by, and require a custodian that facilitates the convertibility to, non-network-native exogenous
value worth at least 100% of total outstanding protocol liabilities. Stablecoin protocols that offer
convertibility to non-network-native assets function as low-volatility permissioned bridges between
their respective networks and the rest of the world. Arbitrage opportunities created by convertibility
ensure the price of the network-native asset is rarely above or below the value of the custodied value
when accounting for frictions around conversions. However, users of non-network-native exogenous
value convertible stablecoins sacrifice permissionlessness and carry entirely: third parties custody
the non-network-native assets, can freeze the network-native assets unilaterally and can retain yield
earned on collateral. The absence of protocol-native opportunities for carry limits liquidity.

5 bitcoin.org
6 circle.com/usdc
7 tether.to
8 wbtc.network
9 renproject.io

5

http://bitcoin.org
http://circle.com/usdc
http://tether.to
http://wbtc.network
http://renproject.io

Network-native exogenous value convertible stablecoin protocols (e.g., Maker10 (DAI) and Abra-
cadabra11) use excess network-native collateral to remove most points of centralization. Overcollat-
eralization removes most risk associated with the volatility of the collateral but by necessity requires
the introduction of rent payments in order to prevent the value of the stablecoin from trending
towards the value of the underlying collateral. The combination of collateral requirements and rent
payments significantly limits the potential supply of these stablecoins. Liquity12 is an ideal simple
iteration of a network-native exogenous value convertible stablecoin protocol, without any points of
centralization and with protocol-native positive carry. In order to remove rent payments, Liquity
does not target an exact price for its stablecoin, LUSD. The potential supply of LUSD is limited by
the value of trustless network-native value.

Despite the shortcomings of exogenous value convertible stablecoin implementations, demand for
their USD implementations continues to increase rapidly. Over the twelve months prior to the
initial deployment of Beanstalk, the total market capitalization of exogenous value convertible USD
stablecoins increased more than 500% to over $100 Billion.13 However, despite this rapid increase
in supply, the borrowing rates on exogenous value convertible USD stablecoins have historically
been higher14 than borrowing rates on USD.15 Noncompetitive carrying costs are due to collateral
requirements. Businesses built on trustless primitives cannot compete with businesses built on
centralized systems due to noncompetitive carrying costs on low-volatility network-native trustless
assets.

To date, implementations of purely endogenous value convertible stablecoins (e.g., Terra16) have
failed. While hybrid value convertible stablecoins (e.g., FRAX17) have demonstrated some efficacy
at peg maintenance at high proportions of exogenous value, their supply is limited by network-native
exogenous value.

1.2 Non-convertible Stablecoins

Non-convertible stablecoin protocols adjust themselves mechanically to return the price of their sta-
blecoin to their value peg without convertibility to collateral. It is impossible to keep a stablecoin
price equal to its value peg without low-friction convertibility. Non-convertible stablecoin proto-
cols without collateral requirements have the potential to create endogenous value that facilitates
trustlessness, competitive carrying costs and deep liquidity at the expense of volatility.

Rebasing stablecoin protocols (e.g., Ampleforth18) have shown efficacy at crossing their stablecoin
prices over their value pegs, but without the regularity, low volatility or liquidity necessary to create
utility. Extreme negative carrying costs during decreases in demand exacerbate difficulty of use.

The value of fiat currency is derived from the credit of its issuer and its utility. Utility of fiat
currency is a function of trustlessness, carrying costs, stability and liquidity. Decentralized credit
can be used to issue a permissionless fiat stablecoin with competitive carrying costs, low volatility
and deep liquidity.

To date, however, implementations of fiat stablecoin protocols have failed to regularly cross their
stablecoin prices over their value pegs with sufficiently low volatility due to poorly designed peg
maintenance mechanisms or seigniorage models that disproportionately reward speculators at the
expense of stablecoin utility.

10 makerdao.com
11 abracadabra.money
12 liquity.org
13 stablecoinindex.com/marketcap
14 app.aave.com/markets
15 newyorkfed.org/markets/reference-rates/effr
16 allcryptowhitepapers.com/terra-whitepaper
17 frax.finance
18 ampleforth.org

6

http://makerdao.com
http://abracadabra.money
http://liquity.org
http://stablecoinindex.com/marketcap
http://app.aave.com/markets
http://newyorkfed.org/markets/reference-rates/effr
http://allcryptowhitepapers.com/terra-whitepaper
http://frax.finance
http://ampleforth.org

1.3 Beanstalk

Beanstalk uses a dynamic peg maintenance mechanism to regularly cross the price of 1 Bean () – the
Beanstalk ERC-20 Standard fiat stablecoin – over its value peg without centralization or collateral
requirements. Instead of holding a perfect peg, Beanstalk creates user confidence by consistently
crossing the price of 1 over its value peg with increased frequency and decreased volatility over
time. Regularly crossing the price of 1 over its value peg creates the opportunity to regularly buy
and sell Beans at their value peg.

Beanstalk consists of five interconnected components: (1) a decentralized timekeeping and execu-
tion facility, (2) a decentralized governance facility, (3) a decentralized credit facility, (4) a decen-
tralized exchange (DEX), and (5) an interface to interact with other Ethereum-native protocols via
Beanstalk. Beanstalk-native financial incentives are used to coordinate the components to (1) create
a stablecoin with competitive carrying costs, (2) regularly cross the price of 1 over its value peg
during both long run decreases and increases in demand for Beans, and (3) attract deep liquidity,
in a cost-efficient, permissionless and decentralized fashion.

Beanstalk is designed from economic first principles to create a useful trustless fiat currency. Over
time, trustlessness, stability and liquidity increase, while carrying costs decrease but remain com-
petitive. The following principles inspire Beanstalk:

• Low concentration of ownership;

• Strong credit;

• The marginal rate of substitution;

• Low friction;

• Equilibrium; and

• Incentive structures determine behaviors of financially motivated actors.

2 Previous Work

Beanstalk is the culmination of previous development, evolution and experimentation within the
DeFi ecosystem.

A robust, trustless computer network that supports composability and fungible token standards
(e.g., Ethereum) with a network-native automated market maker (AMM) decentralized exchange
(e.g., Uniswap19 and Curve20) is required to implement a decentralized stablecoin.

Stablecoin protocols that offer convertibility to the non-network-native asset they are pegged to
reliably bridge the value of non-network-native assets to the network. Beanstalk leverages the
existence of non-network-native exogenous value convertible stablecoins that trade on AMMs to
create a new permissionless stablecoin with a non-network-native value peg.

Beanstalk was inspired by Empty Set Dollar.21 The failures of Empty Set Dollar and similar sta-
blecoin implementations provided invaluable information that influenced the design of Beanstalk.

19 uniswap.org
20 curve.fi
21 emptyset.finance

7

http://uniswap.org
http://curve.fi
http://emptyset.finance

3 Farm

Well designed decentralized protocols create utility for end users without requiring, but never lim-
iting, participation in protocol maintenance. Protocol-native financial incentives encourage perfor-
mance of work to create utility for end users. Low barriers to and variety in work enable a diverse
set of participants. A diverse set of well incentivized workers can create censorship resistant utility.

Beanstalk does not require actions from, impose rent on, or affect in any way, regular Bean users
(e.g., smart contracts). Anyone can join the Farm to use Beanstalk and profit from participation in
protocol maintenance. Governance of Beanstalk upgrades, Bean peg maintenance and use of Beans
take place on the Farm.

The Farm has five primary components: the Sun, Silo, Field, Market and Depot. Beanstalk-native
financial incentives coordinate the components to create a stalwart system of governance, regularly
cross the price of 1 over its value peg, consistently grow Bean liquidity and maximize composability,
without collateral.

The Sun offers payment for participation in timekeeping and execution. Time on the Farm is kept
in Seasons. Anyone can earn Beans for successfully calling the gm function to begin the next Season
at the top of each hour.

The Silo is the Beanstalk DAO. The Silo offers passive yield opportunities to owners of and
other assets (λ) on the Deposit Whitelist (Λ) (i.e., ⊂ λ ∈ Λ) for participation in governance
of Beanstalk upgrades and passive contribution to security, stability and liquidity. Anyone can
become a Stalkholder by Depositing λ into the Silo to earn Stalk. Stalkholders govern Beanstalk
upgrades and are rewarded with Beans when the Bean supply increases. Active contributions to peg
maintenance within the Silo earn additional Stalk.

The Field offers yield opportunities to Sowers (creditors) for participation in peg maintenance.
Anyone can become a Sower by lending Beans that are not in the Silo to Beanstalk. Bean loans are
repaid to Sowers with interest when the Bean supply increases.

The Market offers 0-fee trading to anyone using the Ethereum network.

The Depot facilitates interactions with other Ethereum-native protocols through Beanstalk in a
single transaction.

4 Sun

The Beanstalk governance and peg maintenance mechanisms require a protocol-native timekeeping
mechanism and regular code execution on the Ethereum blockchain. The Sun creates a cost-efficient
protocol-native timekeeping mechanism and incentivizes cost-efficient code execution on Ethereum
at regular intervals. In general, Beanstalk uses Ethereum block timestamps (E), such that E ∈ Z+.

We define a Season (t), such that t ∈ Z+, as an approximately 3,600 second (1 Hour) interval.
The first Season begins when a successful transaction on the Ethereum blockchain that includes a
gm function call is committed. When Beanstalk accepts the gm function call, the necessary code is
executed.

Beanstalk only accepts one gm function call per Season. Beanstalk accepts the first gm function call
provided that the timestamp in the Ethereum block containing it is sufficiently distant from the
timestamp in the Ethereum block containing the Beanstalk deployment (E1).

8

The minimum timestamp Beanstalk accepts a gm function call for a given t (Emin
t), ∀ Emin

t such
that 1 < t, and E1 is:

Emin
t = 3600

(⌊
E1

3600

⌋
+ t

)
The cost to execute the gm function changes depending on the traffic on the Ethereum network and
the state of Beanstalk. Beanstalk covers the transaction cost by awarding the sender of an accepted
gm function call with newly minted Beans.

To encourage regular gm function calls even during periods of congestion on the Ethereum network
while minimizing cost, the award for successfully calling the gm function for t (at) is based on
(1) an approximation of the cost to call the gm function in Beans in the current block (☼Ξ), (2)
the inter-block maximum extractable value (MEV) manipulation resistant time weighted average
(TWA) Bean reserves in the Multi Flow Pump22,23 of the BEAN:ETH Well24,25 from the beginning
of the Season to the current transaction (ΘSMA

,t0,⅁), and (3) the minimum number of Beans that

must be in the BEAN:ETH Well in order for the oracle to be considered (Θmin()), such that
at, ☼Ξ, ΘSMA

,t0,⅁, Θmin() ∈ {j × 10−6 | j ∈ Z+}, and compounds 1% every additional second that

elapses past Emin
t for 300 seconds.

☼Ξ is based on approximations of (1) the gas used to execute the gm function call (ϱ), (2) the gas
fee of the current block denominated in Wei (ϖΞ), such that ϱ, ϖΞ ∈ Z+, and (3) the current price
of ETH in Beans (ϑ), such that ϑ ∈ {j × 10−6 | j ∈ Z+}, up to a maximum of 100 Beans.

Beanstalk calculates ϱ as the difference between gasleft26 at the beginning and end of the gm

function call (ς), such that ς ∈ Z+, up to a maximum of 5× 105 gas:

ϱ = min(ς + 105, 5× 105)

We define ϖΞ as the result of block.basefee27 read through a separate contract28 plus a 5 Wei
buffer to account for the priority fee:

ϖΞ = block.basefee+ 5

ϑ is based on ΘSMA
,t0,⅁ and the inter-block MEV manipulation resistant TWA ETH reserves in the

Multi Flow Pump of the BEAN:ETH Well from the beginning of the Season to the current transac-
tion (ΘSMA

ETH,t0,⅁), such that ΘSMA
ETH,t0,⅁ ∈ {j × 10−18 | j ∈ Z+}:

ϑ =
ΘSMA

,t0,⅁ × 1018

ΘSMA
ETH,t0,⅁

Therefore, we define ☼Ξ for a given ϱ, ϖΞ and ϑ as:

☼Ξ = min(ϱ×ϖΞ × ϑ+ 3, 100)

22 basin.exchange/multi-flow-pump.pdf
23 etherscan.io/address/0xBA510f10E3095B83a0F33aa9ad2544E22570a87C
24 basin.exchange/basin.pdf
25 Any italicized terms not defined herein are defined by Basin.
26 docs.soliditylang.org/en/v0.7.6/units-and-global-variables.html#block-and-transaction-properties
27 docs.soliditylang.org/en/v0.8.7/units-and-global-variables.html#block-and-transaction-properties
28 etherscan.io/address/0x84292919cB64b590C0131550483707E43Ef223aC#code

9

http://basin.exchange/multi-flow-pump.pdf
http://etherscan.io/address/0xBA510f10E3095B83a0F33aa9ad2544E22570a87C
http://basin.exchange/basin.pdf
http://docs.soliditylang.org/en/v0.7.6/units-and-global-variables.html#block-and-transaction-properties
http://docs.soliditylang.org/en/v0.8.7/units-and-global-variables.html#block-and-transaction-properties
http://etherscan.io/address/0x84292919cB64b590C0131550483707E43Ef223aC#code

Therefore, we define at for a given ☼Ξ, Θ
SMA
,t0,⅁, Θ

min(), the timestamp of the current block (EΞ),

and Emin
t as:

at =

{
100 if t = 1 |ΘSMA

,t0,⅁ < Θmin()

☼Ξ × 1.01min{EΞ−Emin
t , 300} else

To minimize the cost of calculating at, the Sun uses a binomial estimation with a margin of error of
less than 0.05% of at. Thus, Beanstalk creates a cost-efficient protocol-native timekeeping mechanism
and ensures cost-efficient code execution on the Ethereum blockchain at regular intervals.

5 Silo

Beanstalk requires the ability to coordinate protocol upgrades. The Silo – the Beanstalk DAO – uses
the Stalk System to create protocol-native financial incentives that coordinate Beanstalk upgrades
and consistently improve security, stability and liquidity. Stalkholders earn passive yield from par-
ticipation in governance of Beanstalk upgrades and passive contributions to security, stability and
liquidity. Active contributions to peg maintenance within the Silo earn additional Stalk.

5.1 The Stalk System

The Stalk System decentralizes ownership over time and creates Beanstalk-native financial incentives
to (1) align DAO voters’ interests with the health of Beanstalk, (2) leave assets Deposited in the
Silo, and (3) allocate liquidity in ways that benefit Beanstalk.

Anyone can become a Stalkholder by Depositing assets on the Deposit Whitelist into the Silo to
earn Stalk and Seeds. Stalk and Seeds are not liquid. Every Season, 1 × 10−4 additional Stalk
Grows from each Seed. Grown Stalk become Stalk when Mown. Grown Stalk from λ Deposits are
automatically Mown each time a Stalkholder interacts with λ in the Silo (i.e., Deposit, Withdraw,
Convert, Transfer, Plant and Enroot), or when they call the mow or mowMultiple function with λ.

Stalkholders are entitled to participate in Beanstalk governance and a portion of Bean mints. The
influence in governance of, and distribution of Beans paid to, a Stalkholder are proportional to their
Stalk holdings relative to total outstanding Stalk. Stalk holdings become less concentrated over
time.

5.2 Deposit Whitelist

Any ERC-20 Standard token can be added to and removed from Λ via Beanstalk governance. is
always on the Deposit Whitelist.

In order for a given λ to be added to Λ Beanstalk requires (1) its token address, (2) a function to
calculate the flash-loan-resistant Bean-denominated-value (BDV) for a given number of λ Deposited,
(fλ(zλ)), such that zλ ∈ {j × 10−6 | j ∈ Z+}, fλ : {j × 10−λ | j ∈ Z+} → {j × 10−6 | j ∈ Z+},
where zλ is the number of λ Deposited, (3) the number of Stalk per BDV of λ Deposited (kλ), such
that kλ ∈ {j× 10−4 | j ∈ Z+}, and (4) the number of Seeds per BDV of λ Deposited (cλ), such that
cλ ∈ Z+, to be stored.

10

5.3 Deposits, Withdrawals, Transfers and Conversions

λ can be Deposited into, Withdrawn from and Converted within, the Silo at any time.

Beanstalk rewards Stalk and Seeds to Depositors immediately upon Depositing λ into the Silo based
on its BDV when Deposited, kλ and cλ. Deposits implement the ERC-1155 Standard.29

Upon a Deposited asset’s Withdrawal from the Silo, the Deposit itself is burned and the number of
Stalk, Seeds, and Stalk from Seeds rewarded to it must also be forfeited.

The number of Stalk, Seeds, and Stalk from Seeds rewarded to a Deposit are included in its Transfer
to another address.

Conversions of Deposited λ to Deposited λ′ are permissioned by a Convert Whitelist. Conversions
can be added or removed from the Convert Whitelist via Beanstalk governance. In order for a given
Convert to be added to the Convert Whitelist, Beanstalk requires (1) the from token address, (2)
the to token address, (3) a list of conditions under which the Conversion is and is not permitted,
and (4) a function to determine the number of λ′ received for Converting a given number of λ
(fλ→λ′

(zλ)), such that fλ→λ′
: {j× 10−λ | j ∈ Z+} → {j× 10−λ′ | j ∈ Z+}, where zλ is the number

of λ Converted.

Figure 1: Silo

5.4 Calculating Stalk and Seeds

A Stalkholder’s total Stalk is the sum of the Stalk for each of their Deposits and Earned (η),
such that η ∈ {j × 10−6 | j ∈ N}. Earned are Beans paid to a Stalkholder after the last time
the Stalkholder called the plant function (η).30,31,32 Beans minted to the Silo are distributed to
Stalkholders and become Earned 10 blocks past the beginning of the Season in which they were
minted. Earned automatically earn Stalk. The next time the Stalkholder calls the plant function,
Earned are Deposited and the associated Seeds are Planted to start Growing Stalk.

When a Stalkholder Deposits λ, they update the total number of λ Deposited during Season i (Zλ
i)

and its total BDV when Deposited (Lλ
i), such that Zλ

i , Lλ
i ∈ {j × 10−6 | j ∈ Z+}, as Zλ

i += zλ

and Lλ
i += fλ(zλ). Beanstalk stores a map of each Stalkholder’s Deposits that are still in the Silo,

from Stalkholder to Deposit ID to Deposit totals (i.e., (Zλ
i , Lλ

i)). Deposit ID is the concatenation
of the λ token address and the maximum Grown Stalk per BDV of λ at the time of Deposit.

The Stalk for a given Deposit are determined by its duration of Deposit, BDV when Deposited, kλ,
cλ and the last Season the Stalkholder Mowed their Grown Stalk from λ Deposits (κλ).

29 ethereum.org/en/developers/docs/standards/tokens/erc-1155
30 bean.money/bip-0
31 bean.money/bpp-0
32 bean.money/bip-21

11

http://ethereum.org/en/developers/docs/standards/tokens/erc-1155
https://bean.money/bip-0
https://bean.money/bpp-0
https://bean.money/bip-21

The Stalk during t for a given Deposit of a Stalkholder that last Mowed their Grown Stalk from λ
Deposits in κλ (kλt), such that kλt ∈ {j × 10−10 | j ∈ Z+}, is:

kλt = Lλ
i

(
kλ +

cλ(κλ − i)

10000

)

A Stalkholder’s total Stalk during t (Kt), such that Kt ∈ {j × 10−10 | j ∈ N}, is:

Kt =
∑
λ∈Λ

κλ∑
i=1

kλt + η

The Grown Stalk from Seeds from λ Deposits that can be Mown during t to start earning Bean
seigniorage for a given Deposit of a Stalkholder that last Mowed their Grown Stalk from λ Deposits
in κλ (gλt), such that gλt ∈ {j × 10−10 | j ∈ N}, is:

gλt = Lλ
i

(
cλ(t− κλ)

10000

)

A Stalkholder’s total Grown Stalk that can be Mown during t (Gt), such that Gt ∈ {j× 10−10 | j ∈
N}, is:

Gt =
∑
λ∈Λ

κλ∑
i=1

gλt

The Seeds for a given Deposit are determined by its BDV when Deposited and cλ.

The Seeds during t for a given Deposit (cλt), such that cλt ∈ {j × 10−6 | j ∈ Z+}, is:

cλt = cλLλ
i

A Stalkholder’s total Seeds during t (Ct), such that Ct ∈ {j × 10−6 | j ∈ N}, is:

Ct =
∑
λ∈Λ

∑
i=1

cλt

The Plantable Seeds associated with a Stalkholder’s η that can be Planted to start earning Grown
Stalk (ηc), such that ηc ∈ {j × 10−6 | j ∈ N}, is:

ηc = c × η

When a Stalkholder Withdraws λ, they must forfeit the number of Stalk, Seeds, and Stalk from
Seeds rewarded to the assets being Withdrawn and update their map accordingly.

When a Stalkholder Transfers λ, they must include the number of Stalk, Seeds, and Stalk from
Seeds rewarded to the assets being Transferred and update their maps accordingly.

12

When a Stalkholder Converts a Deposit, they update its Grown Stalk per BDV to retain its Grown
Stalk from Seeds, and BDV if it is higher. When Converting multiple λ Deposits, their Grown Stalk
per BDV amounts are averaged together, weighted by their BDVs, and rounded up.

5.5 Governance

A robust decentralized governance mechanism must balance the principles of decentralization with
resistance to attempted protocol changes, both malicious and ignorant, and the ability to quickly
adapt to changing information. In practice, Beanstalk must balance ensuring sufficient time for all
ecosystem participants to consider a Beanstalk Improvement Proposal (BIP), join the Silo and cast
their votes, with the ability to be quickly upgraded in cases of emergency.

5.5.1 Participation

Any λ owner can become a Stalkholder and participate in Beanstalk governance by Depositing λ
into the Silo to earn Stalk.

Any Stalkholder that owns more than Kmin, such that Kmin ∈ {j×10−10 | j ∈ N, j ≤ 1010}, percent
of total outstanding Stalk can submit a BIP via the Beanstalk Community Multisig33 (BCM). In the
future, as the ownership concentration of Stalk decreases, we expect a BIP to lower this threshold.

The submitter of a BIP must own more than Kmin
end , such that Kmin

end ∈ {j×10−10 | j ∈ N, j ≤ 1010},
percent of total outstanding Stalk at the end of the Voting Period in order for a BIP to be able to
pass.

The award for submitting a BIP that gets accepted (aBIP), such that aBIP ∈ {j × 10−6 | j ∈ N},
is determined by the submitter of the BIP. If aBIP is excessively high such that a BIP that would
otherwise be acceptable to the community is voted down because of the award, the open source
nature of Beanstalk allows someone else to re-submit an identical BIP except for a more reasonable
aBIP.

Beanstalk only accepts votes in favor of BIPs. A Stalkholder’s vote is counted in proportion to
their Stalk at the beginning of the Voting Period that still exists. Stalkholders have the ability to
delegate their vote to any other user.

5.5.2 Voting Period

A Voting Period opens when the Snapshot34 proposal for a BIP can be voted on and ends approxi-
mately 168 Seasons later, or when it is committed with a supermajority.

If at the end of the Voting Period:

• Less than or equal to half of the total outstanding Stalk at the beginning of the Voting Period
that still exists is voting in favor of the BIP, it fails; and

• More than half of the total outstanding Stalk at the beginning of the Voting Period that still
exists is voting in favor of the BIP, it passes.

If at any time 24 hours or more after the beginning and before the end of the Voting Period more
than two-thirds of the total outstanding Stalk is voting in favor of the BIP, it can be committed to
the Ethereum blockchain.

33 bean.money/bcm-process
34 snapshot.org/#/beanstalkdao.eth

13

http://bean.money/bcm-process
http://snapshot.org/#/beanstalkdao.eth

5.5.3 Pause

In case of a particularly dangerous vulnerability to Beanstalk, the Silo can Pause or Unpause
Beanstalk via BIP. When Paused, Beanstalk does not accept a gm function call. When Unpaused,
the gm function can be called at the beginning of the next hour.

For a given timestamp of last Unpause (EΨ) during Season t
′
, we define Emin

t ∀ Emin
t such that

t
′
< t as:

Emin
t = 3600

(⌊
EΨ

3600

⌋
+ t− t

′
)

5.5.4 Beanstalk Improvement Proposals

Beanstalk implements EIP-2535.35 Beanstalk is a diamond with multiple facets. Beanstalk supports
multiple simultaneous BIPs with independent Voting Periods.

A BIP has three inputs: (1) a list of facets and functions to add and remove upon commit, (2) a
function to run upon commit and (3) the Ethereum address of the contract with (2).

5.5.5 Beanstalk Community Multisig

The BCM address has the exclusive and unilateral ability to Pause and Unpause Beanstalk, and
submit and commit BIPs. The BCM is a 5-of-9 Safe36 multisig wallet with anonymous signers
consisting of community members and contributors to Beanstalk. The BCM will provide sufficient
notice of the submission, its contents and the submission time before submitting a BIP to Snapshot.
In the future, we expect BIPs will remove governance entirely, revoking these abilities from the
BCM.

Thus, Beanstalk creates a robust decentralized governance mechanism and consistently improves
security, stability and liquidity.

6 Field

The Beanstalk peg maintenance mechanism requires the ability to borrow Beans. The Field is the
Beanstalk credit facility.

Anytime there is Soil in the Field, any owner of Beans that are not in the Silo can Sow (lend)
Beans to Beanstalk in exchange for Pods and become a Sower. The Temperature is the interest rate
on Bean loans. The Morning is the first Q, such that Q ∈ Z+, blocks of each Season. Beanstalk
changes the Soil and Temperature at the beginning of each block of the Morning according to the
peg maintenance mechanism.

6.1 Soil

We define Soil (S), such that S ∈ {j × 10−6 | j ∈ N}, as the current number of Beans that can be
Sown in exchange for Pods. 1 is Sown in one Soil. Beanstalk permanently removes Sown from
the Bean supply.

35 eips.ethereum.org/EIPS/eip-2535
36 app.safe.global/eth:0xa9bA2C40b263843C04d344727b954A545c81D043

14

http://eips.ethereum.org/EIPS/eip-2535
http://app.safe.global/eth:0xa9bA2C40b263843C04d344727b954A545c81D043

When Beanstalk is willing to borrow more Beans to remove them from the Bean supply, it creates
more Soil. Beanstalk changes the Minimum Soil (Smin

tq) in block q, such that q ∈ Z+, q ≤ Q, of

t, such that Smin
tq ∈ {j × 10−6 | j ∈ N}, according to the peg maintenance mechanism. During the

Morning of each Season, the Minimum Soil is the result of a Dutch auction.

6.2 Pods

Pods are the primary debt asset of Beanstalk. Beanstalk never defaults on debt: Pods automatically
Yield from Sown and never expire.

In the future, when the average price of 1 is above its value peg over a Season, Pods Ripen and
become Harvestable (redeemable) for 1 at anytime. Pods Ripen on a first in, first out (FIFO)
basis: Pods Yielded from Beans that are Sown first Ripen into Harvestable Pods first. Pod holders
can Harvest their Harvestable Pods anytime by calling the harvest function. There is no penalty
for waiting to Harvest Pods.

Pods are transferable. In practice, Pods are non-callable zero-coupon bonds with priority for matu-
rity represented as a place in line. The number of Pods that Yield from Sown is determined by
the Temperature.

6.3 Temperature

We define the Temperature (h), such that h ∈ Z+, as the percentage of additional Beans ultimately
Harvested from 1 Sown .

The number of Pods (d) that Yield from a given number of Sown (u), such that d, u ∈ {j×10−6 |
j ∈ Z+}, Sown with a given h is:

d = u×
(
1 +

h

100

)

Beanstalk changes the Maximum Temperature it is willing to offer each Season (hmax
t), such that

hmax
t ∈ Z+, at the beginning of each Season according to the peg maintenance mechanism. During

the Morning of each Season, the Temperature is the result of a Dutch auction.37

7 Barn

The Barn is the Beanstalk recapitalization facility, being used for the Beanstalk Replant.38,39

Anytime there is Available Fertilizer (defined below) in the Barn, any owner of ETH40 can buy
Fertilizer from Beanstalk. The Humidity is the interest rate on Fertilizer purchases.

7.1 Fertilizer

Fertilizer is a limited debt issuance. Fertilizer automatically Fertilizes Sprouts and never expires.

37 en.wikipedia.org/wiki/Dutch auction
38 bean.money/bfp-72
39 bean.money/barn
40 coinmarketcap.com/academy/article/what-is-wrapped-ethereum-weth

15

http://en.wikipedia.org/wiki/Dutch_auction
https://bean.money/bfp-72
https://bean.money/barn
http://coinmarketcap.com/academy/article/what-is-wrapped-ethereum-weth

Figure 2: Field

We define Available Fertilizer (V) as the number of Fertilizer that can be bought from Beanstalk in
exchange for 1 USD worth of ETH using the inter-block MEV manipulation resistant USD price of
ETH ($ETH), such that $ETH ∈ {j×10−6 | j ∈ Z+}, Active Fertilizer (A) as the number of Fertilizer
that have been bought but have not Fertilized all associated Sprouts, and Used Fertilizer (U), such
that V, A, U ∈ N, as the number of Fertilizer that have been bought and Fertilized all associated
Sprouts.

$ETH is calculated using the USD prices of ETH from (1) the ETH/USD Chainlink data feed
($ETH(χ)), (2) the ETH:USDC 0.05% fee Uniswap V3 pool ($ETH(ν)) and (3) the ETH:USDT 0.05%
fee Uniswap V3 pool ($ETH(τ)), such that $ETH(χ), $ETH(ν), $ETH(τ) ∈ {j × 10−6 | j ∈ Z+}.

$ETH(χ) is calculated by calling the Chainlink41 latestRoundData and decimals functions on χ as:

$ETH(χ) =
latestRoundData()× 106

10 decimals()

$ETH(ν) and $ETH(τ) are calculated by calling the Uniswap V3 getQuoteAtTick function using ticks
read over the last 15 minutes on ν and τ , respectively.42,43

We define $ETH for a given $ETH(χ), $ETH(ν), $ETH(τ), the percent difference between $ETH(χ)

and $ETH(ν) (∆$ETH(ν/χ)

, i.e., $ETH(ν)

$ETH(χ) − 1) and the percent difference between $ETH(χ) and $ETH(τ)

(∆$ETH(τ/χ)

, i.e., $ETH(τ)

$ETH(χ) − 1), such that ∆$ETH(ν/χ)

, ∆$ETH(τ/χ) ∈ {j × 10−6 | j ∈ Z+}, as:

$ETH =


0 if $ETH(χ) = 0
$ETH(χ)+$ETH(τ)

2 if ∆$ETH(τ/χ)

< ∆$ETH(ν/χ)

&& ∆$ETH(τ/χ)

< 0.05%
$ETH(χ)+$ETH(ν)

2 if ∆$ETH(τ/χ)

>= ∆$ETH(ν/χ)

&& ∆$ETH(ν/χ)

< 0.05%

$ETH(χ) else

41 etherscan.io/address/0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419#code
42 etherscan.io/address/0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640#code
43 etherscan.io/address/0x11b815efB8f581194ae79006d24E0d814B7697F6#code

16

http://etherscan.io/address/0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419#code
http://etherscan.io/address/0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640#code
http://etherscan.io/address/0x11b815efB8f581194ae79006d24E0d814B7697F6#code

In the future, when the average price of 1 is above its value peg over a Season, Active Fertilizer
Fertilizes Sprouts such that they become Rinsable (redeemable) for 1 at anytime. Active Fertilizer
Fertilizes a pro-rata portion of Sprouts, by Fertilizer. Fertilizer owners can Rinse their Rinsable
Sprouts anytime by calling the rinse function. There is no penalty for waiting to Rinse Sprouts.

Fertilizer is transferable. In practice, Fertilizer is a non-callable zero-coupon pari passu bond without
a fixed maturity. The number of Sprouts that Fertilizer ultimately Fertilizes is dependent on the
Humidity at its time of purchase.

7.2 Humidity

We define the Humidity (H), such that H ∈ {j× 10−1 | j ∈ Z+}, as 1 less than the number of Beans
ultimately Fertilized from 1 Fertilizer divided by 100.

The number of Sprouts (d), such that d ∈ {j × 10−6 | j ∈ Z+}, ultimately Fertilized by Available
Fertilizer purchased with given H (VH), such that VH ∈ Z+, is:

d = VH ×
(
1 +

H

100

)

The Humidity is constant each Season. The Humidity is 500 prior to the Replant, after which it is
250 for a full Season and then decreases by 0.5 each Season until it reaches 20.

7.3 Recapitalization

Beanstalk uses the proceeds from the sale of Fertilizer to recapitalize value stolen from Stalkholders
in the April 17th, 2022 governance exploit (the Exploit). Beanstalk will sell enough Fertilizer to
fully recapitalize all non-Beanstalk-native value stolen from Stalkholders.

The proportion of a Stalkholder’s Stalk and Seeds at the end of the block prior to the Exploit that
have been Revitalized and can be Enrooted to begin earning Bean seigniorage and Grown Stalk,
respectively, is a function of the percentage of Fertilizer sold.

Non-Beanstalk-native and Beanstalk-native value stolen from Stalkholders are recapitalized simul-
taneously via Unripe assets. Unripe assets entitle holders to an associated number of Ripe assets
(i.e., and Θ). The number of Ripe assets associated with a given Unripe asset increases as more
Fertilizer is sold. Holders of Unripe assets can Chop them and receive a portion of the associated
Ripe asset at anytime. The portion of Ripe assets that can be received by Chopping a given Unripe
asset increases as the percentage of Sprouts Fertilized increases. Claims to future Ripe assets are
forfeited upon Chopping the Unripe asset.

At the time of Replant, Fertilizer purchases added liquidity to the BEAN:3CRV Curve pool (Φ),
such that Φ ∈ {j×10−18 | j ∈ Z+}, and Unripe and Unripe Φ were distributed to holders of Beans
and λ at the end of the block prior to the Exploit, respectively.44 On October 20th, 2023, Ripe
Φ and Unripe Φ were migrated to Ripe Θ and Unripe Θ, respectively, as part of the BEAN:ETH
Migration.45

44 bean.money/bip-20
45 bean.money/bip-38

17

http://bean.money/bip-20
http://bean.money/bip-38

7.3.1 Available Fertilizer

The number of Available Fertilizer is the difference between the total Fertilizer (F) and total Fer-
tilizer sold (S), such that F, S ∈ Z+. F is a function of the current total Unripe Θ (ZΘ) and the
total Unripe Φ at the time of Replant (ZΦ⊗), such that ZΘ, ZΦ⊗ ∈ {j × 10−6 | j ∈ Z+}. S is the
sum of Active Fertilizer and Used Fertilizer.

We define F for a given ZΘ and ZΦ⊗ as:

F =
7.7× 107 × ZΘ

ZΦ⊗
We define S for a given A and U as:

S = A+ U

Therefore, we define V for a given F and S as:

V = F−S

7.3.2 Revitalized Stalk and Seeds

Upon Replant, Stalkholders at the end of the block prior to the Exploit received a portion of their
Stalk, Seeds and Plantable Seeds at the end of the block prior to the Exploit based on the percentage
of Fertilizer sold prior to Replant (X⊗), such that X⊗ ∈ {j × 10−6 | j ∈ Z+}. As the percentage
of Fertilizer sold (X), such that X ∈ {j × 10−6 | j ∈ Z+}, increases, additional Stalk and Seeds are
Revitalized and can be Enrooted. Revitalized Stalk and Revitalized Seeds become Stalk and Seeds
respectively, upon being Enrooted.

We define X for a given S and F as:

X =
S

F

A Stalkholder’s Stalk upon Replant (K⊗) given X⊗ and their Stalk at the end of the block prior
to the Exploit (K⊙), such that K⊗, K⊙ ∈ {j × 10−10 | j ∈ Z+}, is:

K⊗ = X⊗ ×K⊙
A Stalkholder’s Seeds upon Replant (C⊗) given X⊗, their Seeds at the end of the block prior to
the Exploit (C⊙) and their Plantable Seeds at the end of the block prior to the Exploit (ηc⊙), such

that C⊗, C⊙, ηc⊙ ∈ {j × 10−6 | j ∈ Z+}, is:

C⊗ = X⊗ × (C⊙ + ηc⊙)

18

The number of Revitalized Stalk (φK
t), such that φK

t ∈ {j× 10−10 | j ∈ Z+}, and Revitalized Seeds
(φC

t), such that φC
t ∈ {j × 10−6 | j ∈ Z+}, that can be Enrooted by a Stalkholder during t are

functions of the change in X (∆X), such that ∆X ∈ {j×10−6 | j ∈ Z+}, between (1) the Season they
last called the enroot function (φ) or (2) the Replant if they have never Enrooted their Revitalized
Stalk and Revitalized Seeds (i.e., φ = 0), and t, and K⊙ or C⊙ and ηc⊙, respectively.

We define ∆X for a given Stalkholder that last Enrooted their Revitalized Stalk and Revitalized
Seeds in φ as:

∆X =

Xt − Xφ if φ > 0

Xt − X⊗ else

We define φK
t for a given ∆X and K⊙ as:

φK
t = ∆X×K⊙

We define φC
t for a given ∆X and C⊙ as:

φC
t = ∆X× (C⊙ + ηc⊙)

7.3.3 Unripe Assets

Holders of Beans at the end of the block prior to the Exploit received Unripe (z), such that
z ∈ {j × 10−6 | j ∈ Z+}, at a 1:1 ratio. Holders of λ not Deposited at the end of the block prior to
the Exploit received Unripe Φ (zΦ), such that zΦ ∈ {j × 10−6 | j ∈ Z+}, at a ratio of 1 zΦ per BDV
of λ held at the end of the block prior to the Exploit. Holders of λ Deposited at the end of the block
prior to the Exploit received zΦ at a ratio of 1 zΦ per the maximum of the BDV of λ Deposits at the
end of the block prior to the Exploit and at the time of Deposit, per Deposit. As of the BEAN:ETH
Migration, zΦ became Unripe Θ (zΘ), such that zΘ ∈ {j × 10−6 | j ∈ Z+}.

7.3.4 Ripe Assets

The number of Ripe assets (i.e., Ripe (R), such that R ∈ {j × 10−6 | j ∈ Z+}, and Ripe Θ
(RΘ), such that RΘ ∈ {j × 10−18 | j ∈ Z+}), increases as more Fertilizer is sold.

The change in Ripe (∆R) for a given purchase of Fertilizer (∆S⅁) is a function of the total Unripe
(Z), the Ripe prior to the purchase (R<⅁), such that ∆R , Z , R<⅁ ∈ {j × 10−6 | j ∈ Z+},

F, and the Fertilizer sold prior to the purchase (S<⅁), such that ∆S⅁, S<⅁ ∈ Z+.

We define ∆R for a given ∆S⅁, Z , R<⅁, F, S<⅁ as:

∆R =
∆S⅁ × (Z −R<⅁)

F−S<⅁

19

The change in Ripe Θ (∆RΘ), such that ∆RΘ ∈ {j × 10−18 | j ∈ Z+}, for a given ∆S⅁, Beanstalk

contract address (
@
, such that

@ ∈ {j ∈ N | j < 1640}, @
=

0xc1e088fc1323b20bcbee9bd1b9fc9546db5624c5) and minimum RΘ received (RΘmin

) is the result
of calling the Well Implementation46 sync function on Θ immediately after minting ∆S⅁×0.866616

10−6

Beans to the BEAN:ETH Well.

We define ∆RΘ for a given
@
and RΘmin

as:

∆RΘ = Θ.sync(
@
, RΘmin

)

7.3.5 Chopping

The percentage of Ripe assets received for Chopping a pro-rata portion of Unripe assets (M) is a
function of the total Sprouts Fertilized by Fertilizer (∆D) and the total Unfertilized Sprouts (i.e.,
Sprouts not yet Fertilized by Active Fertilizer) (D), such that M, ∆D, D ∈ {j × 10−6 | j ∈ Z+}.

We define M for a given ∆D and D as:

M =
∆D

∆D+D

The number of Beans received for Chopping a given z (P), such that P ∈ {j × 10−6 | j ∈ Z+},
is a function of M, R and Z .

We define P for a given z , M and R as:

P =
z ×M×R

Z

The number of Θ received for Chopping a given zΘ (PΘ), such that PΘ ∈ {j × 10−18 | j ∈ Z+}, is
a function of M, S, ZΦ⊗ and ZΘ.

We define PΘ for a given zΘ, M, S, ZΦ⊗ and ZΘ as:

PΘ =
zΘ ×M×S× ZΦ⊗

ZΘ

Chopped Unripe and Θ are burned (i.e., Z −= z , ZΘ −= zΘ). and Θ received for Chopping
are distributed from Ripe and Θ, respectively (i.e., R −= P , RΘ −= PΘ).

46 etherscan.io/address/0xBA510e11eEb387fad877812108a3406CA3f43a4B#code

20

http://etherscan.io/address/0xBA510e11eEb387fad877812108a3406CA3f43a4B#code

Figure 3: Barn

8 Peg Maintenance

Beanstalk faces the fundamental limitation that it cannot fix the price of 1 at its value peg,
but instead must encourage widespread participation in peg maintenance through protocol-native
financial incentives. Stability is a function of how frequently and regularly the price of 1 crosses,
and the magnitudes of price deviations from, its value peg. Beanstalk regularly crosses the price of
1 over its value peg during both long run decreases and increases in demand for Beans.

Beanstalk has four peg maintenance tools available: (1) increase the Bean supply, (2) change the
Soil supply, (3) change the Temperature, and (4) a Flood (defined below). At the beginning of every
Season, Beanstalk evaluates its position (i.e., price and debt level) and current state (i.e., direction
and acceleration) with respect to ideal equilibrium, and dynamically adjusts the Bean supply, Soil
supply and Maximum Temperature to move closer to ideal equilibrium.

21

8.1 Ideal Equilibrium

Beanstalk is credit based. Beanstalk only fails if it can no longer attract creditors. A reasonable level
of debt attracts creditors. Therefore, in addition to the Bean price, the peg maintenance mechanism
considers the Beanstalk debt level (defined below).

Beanstalk is in ideal equilibrium when the Bean price and the Beanstalk debt level are both stable
at their optimal levels. In practice, this requires that three conditions are met: (1) the price of 1 is
regularly oscillating over its value peg, (2) the Beanstalk debt level is optimal (defined below), and
(3) demand for Soil is steady (defined below).

Beanstalk affects the supply of and demand for Beans to return to ideal equilibrium in response
to the Bean price, the Beanstalk debt level and changing demand for Soil, by adjusting the Bean
supply, Soil supply and Temperature. Bean supply increases and Soil supply changes primarily
affect Bean supply. Temperature changes primarily affect demand for Beans. In order to make the
proper adjustments, Beanstalk closely monitors the states of both the Bean and Soil markets.

In practice, maintaining ideal equilibrium is impossible. Deviations from ideal equilibrium along
both axes are normal and expected. As Beanstalk grows, the durations and magnitudes of deviations
decrease.

8.2 Decentralized Price Oracle

One problem native to decentralized stablecoin protocols is the need to be aware of some price
without trusting a centralized party to provide it. An oracle delivers external information to smart
contracts. A robust decentralized stablecoin requires a tamper-proof, manipulation resistant and
decentralized price oracle.

When a price source is not native to the network, decentralized price oracles are complicated to build,
expensive to maintain and often inaccurate. Beanstalk leverages network-native decentralized AMMs
and non-network-native exogenous value convertible stablecoins to remove these complications, costs
and inaccuracies almost entirely, and create an immutable, manipulation resistant and decentralized
source for the price of a non-Ethereum-native value peg.

Ethereum-native permissionless AMM protocols allow anyone to create new AMMs between at least
two ERC-20 Standard tokens. AMMs always offer a price on any size trade, at any time, for a
trading fee. AMMs allow continuous trading in either direction by maintaining a liquidity pool of
the tokens. The current price is a function of the ratio of the assets in the pool and the AMM
pricing formula. Anyone can add liquidity to the pool in exchange for liquidity pool tokens (LP
tokens) unique to that liquidity pool. LP token owners often receive a portion of trading fees. Price
slippage is proportional to the ratio between the sizes of a trade and the liquidity pool. AMMs with
larger liquidity pools serve as more robust price sources.

In general, Beanstalk can issue a Bean with a value peg (V) for 1 equal to any non-network-
native asset (e.g., $1) with at least one existing ERC-20 Standard convertible stablecoin (x) (e.g.,
USDC) that (1) offers low-friction convertibility to V , and (2) trades on an AMM against a liquid,
decentralized network-native asset with endogenous value (y) (e.g., ETH).

To determine the value of 1 compared to V , Beanstalk can compare (1) an existing liquidity pool
(x:y) (e.g., USDC:ETH) that consists of x and y, and (2) a new liquidity pool (:y) that consists of
Beans and y. The combination of arbitrage opportunities between AMMs and other exchanges, and
between x and V , ensures the x:y AMM price closely mirrors the exchange rate between V and y.

22

Beanstalk would consider the price of 1 equal to its value peg when the ratios of x:y and :y are
equal.

Decentralized systems are never administered by or dependent on a single individual or centralized
organization. Beanstalk can leverage an arbitrary x while minimizing exposure to malicious actions
from its operators (e.g., censorship) by deriving the price from the ratio between x:y and :y. In
instances where there is insufficient inter-block MEV manipulation resistant liquidity for x:y on
DEX protocols, Beanstalk uses a Chainlink47 data feed and compares it with the x:y AMM prices
to facilitate inter-block MEV manipulation resistance.

In practice, Beanstalk never calculates the price of 1. Instead, at the beginning of each Season,
Beanstalk calculates a sum of liquidity and time weighted average shortages and excesses of Beans
across :y liquidity pools on the Minting Whitelist over the previous Season (∆Bt−1), such that
∆Bt−1 ∈ {j × 10−6 | j ∈ N}. Liquidity pools can be added to and removed from the Minting
Whitelist via Beanstalk governance.

∆Bt−1 can be used to infer the liquidity and time weighted average price of 1 compared to V over
the previous Season (Pt−1), such that Pt−1 ∈ {j × 10−6 | j ∈ Z+}. If there was a liquidity and time
weighted average shortage of Beans across liquidity pools on the Minting Whitelist over the previous
Season (i.e., 0 < ∆Bt−1), V < Pt−1. If there was a liquidity and time weighted average excess of
Beans across liquidity pools on the Minting Whitelist over the previous Season (i.e., ∆Bt−1 < 0),
Pt−1 < V . If there was neither a liquidity and time weighted shortage nor excess of Beans across
liquidity pools on the Minting Whitelist over the previous Season (i.e., ∆Bt−1 = 0), Pt−1 = V .

∆Bt−1 = 0 for each Season that contains a Pause and Unpause.

Thus, Beanstalk constructs an immutable, manipulation resistant and decentralized price oracle for
a non-Ethereum-native value peg.

8.3 Debt Level

The Pod Rate (RD), such that RD ∈ {j×10−6 | j ∈ N}, represents the Beanstalk debt level relative
to the Bean supply.

Beanstalk does not consider Burnt , Sown , Unfertilized Sprouts nor Unharvestable Pods, but
does consider Rinsable Sprouts and Harvestable Pods, as part of the total Bean supply.

We define the total Bean supply (B) for a given total Beans minted over all Seasons (M), such that
B, M,∈ {j × 10−6 | j ∈ Z+}, total aBIP for all passed BIPs (ABIP), total awards for all committed
BIPs (Aq), total Beans minted via BIP (BBIP) (e.g., Fundraisers), total Burnt over all Seasons
(N) and total Sown over all Seasons (U), such that ABIP, Aq, BBIP, N , U ∈ {j×10−6 | j ∈ N},
as:

B = M +ABIP +Aq +BBIP − (N + U)

We define RD for a given the total number of Unharvestable Pods (D), such that D ∈ {j × 10−6 |
j ∈ N}, and B as:

RD =
D

B

47 chain.link

23

http://chain.link

Beanstalk requires three RD levels to be set: (1) RDlower

, below which debt is considered excessively
low, (2) RD∗

, an optimal level of debt, and (3) RDupper

, above or equal to which debt is considered

excessively high, such that RDlower

, RD∗
, RDupper ∈ {j × 10−6 | j ∈ Z+}. When RDlower ≤ RD <

RDupper

and RD ̸= RD∗
(i.e., not optimal), RD is considered reasonable.

Excessively

High Debt

Reasonably

High Debt

Reasonably

Low Debt

Excessively

Low Debt

RDlower
RD∗

RDupper

• • •RD RD

Figure 4: Debt Level

8.4 Position

The position of Beanstalk with respect to ideal equilibrium can be represented on a graph with
axes RD and P , and ideal equilibrium at the origin (RD∗

, 1). The current state of Beanstalk is
determined in part by the position of Beanstalk with respect to ideal equilibrium.

Excessively

High Debt

Reasonably

High Debt

Reasonably

Low Debt

Excessively

Low Debt

RDlower

RDupper
P

• • •RD RD

Figure 5: Position

8.5 Direction

The position of Beanstalk with respect to ideal equilibrium changes at the beginning of each Season.
The current state of Beanstalk with respect to ideal equilibrium is determined in part by the direction
of this change.

The direction of change in position of Beanstalk at the beginning of t is considered either toward
or away from ideal equilibrium, based on the Pod Rate at the end of the previous Season (RD

t−1),
such that RD

t−1 ∈ {j × 10−6 | j ∈ Z+}, RD
t−1 and Pt−1. When V < Pt−1, debt is paid back; when

Pt−1 < V , debt can only increase or remain constant.

Therefore, when RD∗
< RD

t−1 (i.e., there was more debt than optimal):

• If V < Pt−1, Beanstalk moves toward ideal equilibrium; and

• If Pt−1 ≤ V , Beanstalk moves away from ideal equilibrium.

When RD
t−1 ≤ RD∗

(i.e., there was less debt than optimal):

• If V ≤ Pt−1, Beanstalk moves away from ideal equilibrium; or

• If Pt−1 < V , Beanstalk moves toward ideal equilibrium.

8.6 Acceleration

The current state of Beanstalk with respect to ideal equilibrium also is determined by the rate of
change of position of Beanstalk at the beginning of each Season (i.e., its acceleration).

24

RD
t−1

Direction
Excessively
Low Debt

Reasonably
Low Debt

Reasonably
High Debt

Excessively
High Debt

P
t−

1 Pt−1 > 1 Away From Away From Toward Toward

Pt−1 < 1 Toward Toward Away From Away From

Figure 6: Direction

The acceleration of Beanstalk is considered decelerating, steady or accelerating, based on Pt−1 and
changing demand for Soil. Demand for Soil is considered decreasing, steady or increasing.

When demand for Soil is decreasing:

• If V < Pt−1, Beanstalk is decelerating;

• If Pt−1 < V , Beanstalk is accelerating;

• If Pt−1 = V and RD
t−1 ≤ RD∗

, Beanstalk is accelerating; and

• If Pt−1 = V and RD∗
< RD

t−1, Beanstalk is decelerating.

When demand for Soil is steady, Beanstalk is steady.

When demand for Soil is increasing:

• If V ≤ Pt−1, Beanstalk is accelerating;

• If Pt−1 < V , Beanstalk is decelerating;

• If Pt−1 = V and RD
t−1 ≤ RD∗

, Beanstalk is decelerating; and

• If Pt−1 = V and RD∗
< RD

t−1, Beanstalk is accelerating.

Demand for Soil

Acceleration
Decreasing
Demand

Steady
Demand

Increasing
Demand

P
t−

1 Pt−1 > 1 Decelerating Steady Accelerating

Pt−1 < 1 Accelerating Steady Decelerating

Figure 7: Acceleration

8.7 Demand for Soil

In order to properly classify its acceleration, Beanstalk must accurately measure changing demand
for Soil.

The number of Sown each Season (ut), such that ut ∈ {j × 10−6 | j ∈ N}, indicates demand for
Soil over the course of that Season. The rate of change of ut from Season to Season (∂ut

∂t), such that
∂ut

∂t ∈ {j × 10−6 | j ∈ N}, indicates changing demand for Soil.

We define ∂ut

∂t over the previous two Seasons, ut−1 and ut−2, respectively, as:

∂ut

∂t
=

ut−1

ut−2

25

Beanstalk requires two ∂ut

∂t levels to be set: (1) ∂ut

∂t

lower
, below which demand for Soil is considered

decreasing, and (2) ∂ut

∂t

upper
, above or equal to which demand for Soil is considered increasing, such

that ∂ut

∂t

lower
, ∂ut

∂t

upper ∈ {j × 10−6 | j ∈ Z+}. When ∂ut

∂t

lower ≤ ∂ut

∂t < ∂ut

∂t

upper
, demand for Soil is

considered steady.

Increasing

Demand

Steady

Demand

Decreasing

Demand

∂ut

∂t

lower ∂ut

∂t

upper

• •∂ut

∂t
∂ut

∂t

Figure 8: Soil Demand Changes From ∂ut

∂t

However, when Beans are Sown in all Soil in a Season (defined as Send
t ≤ 1), ∂ut

∂t can inaccurately
measure changing demand for Soil. The first time Beans are Sown in all but at most one Soil in a
Season, after one or more Seasons where Beans were not Sown in all but at most one Soil, demand
for Soil is considered increasing. When Beans are Sown in all but at most one Soil in consecutive
Seasons (i.e., t − 1 and t − 2), the difference in time it took for the Beans to be Sown in all but
at most one Soil over the previous two Seasons (∆Eu

t), such that ∆Eu
t ∈ Z, can provide a more

accurate measurement.

In order to measure ∆Eu
t , Beanstalk logs the time of the first Sow such that Beans are Sown in all

but at most one Soil in each Season (∆Eufirst

t), such that ∆Eufirst

t ∈ N, as the difference between the

Ethereum timestamp of the first Sow in t such that there is at most one Soil (Eufirst

t) and EΞ.

We define ∆Eufirst

t for a given Eufirst

t and EΞ as:

∆Eufirst

t = Eufirst

t − EΞ

If Beans were Sown in all but at most one Soil in the first 10 minutes of the previous Season (i.e.,

∆Eufirst

t−1 < 600), demand for Soil is considered increasing. If Beans were Sown in all but at most one

Soil in both t− 1 and t− 2, but 600 ≤ ∆Eufirst

t−1 , at the beginning of t Beanstalk compares ∆Eufirst

t−1

with ∆Eufirst

t−2 to calculate ∆Eu
t .

We define ∆Eu
t for a given ∆Eufirst

t−1 and ∆Eufirst

t−2 as:

∆Eu
t = ∆Eufirst

t−2 −∆Eufirst

t−1

If the above condition is met, changing demand for Soil is measured by ∆Eu
t . Beanstalk requires two

∆Eu
t levels to be set: (1) ∆Eulower

t , below which demand for Soil is considered decreasing, and (2)

∆Euupper

t , above which demand for Soil is considered increasing, such that ∆Eulower

t , ∆Euupper

t ∈ Z.
When ∆Eulower

t ≤ ∆Eu
t < ∆Euupper

t , demand for Soil is considered steady.

Thus, Beanstalk measures changing demand for Soil.

Increasing

Demand

Steady

Demand

Decreasing

Demand

∆Eulower

t ∆Euupper

t

• •∆Eu
t ∆Eu

t

Figure 9: Soil Demand Changes From ∆Eu
t

26

8.8 Current State

We define the current state of Beanstalk with respect to ideal equilibrium as the combination of its
direction and acceleration with respect to ideal equilibrium. With two potential directions and three
potential accelerations, Beanstalk has six potential current states:

• Accelerating away from ideal equilibrium;

• Steady away from ideal equilibrium;

• Decelerating away from ideal equilibrium;

• Accelerating toward ideal equilibrium;

• Steady toward ideal equilibrium; and

• Decelerating toward ideal equilibrium.

Acceleration

Current State Decelerating Steady Accelerating

D
ir
e
c
ti
o
n Away From

Decelerating
Away From

Steady
Away From

Accelerating
Away From

Toward
Decelerating

Toward
Steady
Toward

Accelerating
Toward

Figure 10: Current State

8.9 Optimal State

An optimal state of Beanstalk is an optimal current state determined by its current debt level.

We define an optimal state of Beanstalk as accelerating toward ideal equilibrium, or either steady
or decelerating toward ideal equilibrium. When RD is excessively high or low, the optimal state
is accelerating toward ideal equilibrium. When RD is reasonably high or low, the optimal state is
either steady or decelerating toward ideal equilibrium.

RD

Optimal State
Excessively
Low Debt

Reasonably
Low Debt

Reasonably
High Debt

Excessively
High Debt

Accelerating
Toward

Steady or
Decelerating

Toward

Steady or
Decelerating

Toward

Accelerating
Toward

Figure 11: Optimal State

8.10 Bean Supply

At the beginning of each Season, if V < Pt−1, Beanstalk increases the Bean supply based on ∆Bt−1

in addition to the award for successfully calling the gm function. Up to two thirds of the additional
Bean supply increase is used to pay off debt; the remainder is distributed to Stalkholders.

At the beginning of each Season, Beanstalk mints mt Beans, such that mt ∈ {j × 10−6 | j ∈ Z+}.

We define mt for a given ∆Bt−1 and at as:

mt = max(0, ∆Bt−1) + at

27

The distribution of the additional mint is dependent on ∆Bt−1, D and D. If 0 <
∆Bt−1

3 ≤ D (i.e.,

there are at most
∆Bt−1

3 Unfertilized Sprouts),
∆Bt−1

3 Sprouts are Fertilized by Active Fertilizer

and become Rinsable. If 0 < D <
∆Bt−1

3 (i.e., there are less Unfertilized Sprouts than
∆Bt−1

3), D
Sprouts are Fertilized by Active Fertilizer and become Rinsable.

Therefore, the number of Unfertilized Sprouts that are Fertilized by Active Fertilizer and become
Rinsable at the beginning of each Season (∆Dt), such that ∆Dt ∈ {j × 10−6 | j ∈ N}, for a given
∆Bt−1 and D is:

∆Dt = min

(
max

(
0,

∆Bt−1

3

)
, D

)

The distribution of the remaining Beans (i.e. ∆Bt−1 −∆Dt) is dependent on D. If 0 < ∆Bt−1 −
∆Dt < D (i.e., there are at most ∆Bt−1 − ∆Dt Unharvestable Pods),

∆Bt−1−∆Dt

2 Pods Ripen

and become Harvestable and
∆Bt−1−∆Dt

2 newly minted Beans are distributed to Stalkholders. If

0 < D <
∆Bt−1−∆Dt

2 (i.e., there are less Unharvestable Pods than ∆Bt−1−∆Dt), D Pods Ripen and
become Harvestable and ∆Bt−1 − (∆Dt +D) newly minted Beans are distributed to Stalkholders.

Therefore, the number of Pods that Ripen and become Harvestable at the beginning of each Season
(∆Dt), such that ∆Dt ∈ {j × 10−6 | j ∈ N}, is:

∆Dt = min

(
max

(
0,

∆Bt−1 −∆Dt

2

)
, D

)

8.11 Soil Supply

Beanstalk is willing to issue debt every Season. When V ≤ Pt−1, the Soil supply is based on (1)
the number of Pods that Ripen and become Harvestable at the beginning of the Season, (2) the
Temperature in block q of t (htq), such that htq ∈ Z+, and (3) RD

t−1. When Pt−1 < V , the Soil
supply is also based on ∆Bt−1.

We define the Smin
tq Beanstalk has outstanding for a given ∆Dt, htq and RD

t−1 as:

Smin
tq =



0.5×∆Dt

1 +
htq

100

if RDupper ≤ RD
t−1

∆Dt

1 +
htq

100

if RDlower

< RD
t−1

1.5×∆Dt

1 +
htq

100

else

Beanstalk calculates the Maximum Soil (Smax
tq), such that Smax

tq ∈ {j × 10−6 | j ∈ N}, in block q of

t for a given ∆Bt−1 and Smin
tq as:

Smax
tq = max(−∆Bt−1, Smin

tq)

28

8.12 Temperature

Beanstalk regularly crosses the price of 1 over its value peg during long run decreases and increases
in demand for Beans primarily by adjusting the Maximum Temperature in an attempt to maintain
an optimal state, or to move from its current state into an optimal state. The Temperature increases
each block of the Morning of each Season according to a Dutch auction.

8.12.1 Maximum Temperature

The Maximum Temperature change at the beginning of t is determined by RD
t−1 and the current

state of Beanstalk with respect to ideal equilibrium. When RD
t−1 is excessively high or low, Beanstalk

changes the Maximum Temperature more aggressively.

When RDupper ≤ RD
t−1 (i.e., the debt level was excessively high):

• If the current state is accelerating or steady away from ideal equilibrium, the Maximum Tem-
perature is raised 3%;

• If the current state is decelerating away from ideal equilibrium, the Maximum Temperature is
raised 1%;

• If the current state is decelerating toward ideal equilibrium, the Maximum Temperature is
kept constant;

• If the current state is steady toward ideal equilibrium, the Maximum Temperature is lowered
1%; and

• If the current state is accelerating toward ideal equilibrium, the Maximum Temperature is
lowered 3%.

When RD∗ ≤ RD
t−1 < RDupper

(i.e., the debt level was reasonably high):

• If the current state is accelerating or steady away from ideal equilibrium, the Maximum Tem-
perature is raised 3%;

• If the current state is decelerating away from ideal equilibrium, the Maximum Temperature is
raised 1%;

• If the current state is decelerating toward ideal equilibrium, the Maximum Temperature is
kept constant;

• If the current state is steady toward ideal equilibrium, the Maximum Temperature is lowered
1%; and

• If the current state is accelerating toward ideal equilibrium, the Maximum Temperature is
lowered 3%.

When RDlower ≤ RD
t−1 < RD∗

(i.e., the debt level was reasonably low):

• If the current state is accelerating or steady away from ideal equilibrium, the Maximum Tem-
perature is lowered 3%;

• If the current state is decelerating away from ideal equilibrium, the Maximum Temperature is
lowered 1%;

• If the current state is decelerating toward ideal equilibrium, the Maximum Temperature is
kept constant;

29

• If the current state is steady toward ideal equilibrium, the Maximum Temperature is raised
1%; and

• If the current state is accelerating toward ideal equilibrium, the Maximum Temperature is
raised 3%.

When RD
t−1 < RDlower

(i.e., the debt level was excessively low):

• If the current state is accelerating or steady away from ideal equilibrium, the Maximum Tem-
perature is lowered 3%;

• If the current state is decelerating away from ideal equilibrium, the Maximum Temperature is
lowered 1%;

• If the current state is decelerating toward ideal equilibrium, the Maximum Temperature is
kept constant;

• If the current state is steady toward ideal equilibrium, the Maximum Temperature is raised
1%; and

• If the current state is accelerating toward ideal equilibrium, the Maximum Temperature is
raised 3%.

RD
t−1

Temperature Changes
Excessively
Low Debt

Reasonably
Low Debt

Reasonably
High Debt

Excessively
High Debt

C
u
rr
e
n
t
S
ta

te

Accelerating Away From -3 -3 3 3

Steady Away From -3 -3 3 3

Decelerating Away From -1 -1 1 1

Decelerating Toward 0 0 0 0

Steady Toward 1 1 -1 -1

Accelerating Toward 3 3 -3 -3

Figure 12: Maximum Temperature Changes From Current State and RD
t−1

RD
t−1

Temperature Changes
Excessively
Low Debt

Reasonably
Low Debt

Reasonably
High Debt

Excessively
High Debt

P
t−

1
&

D
e
m
a
n
d

C
h
a
n
g
e
s Increasing -3 -3 -3 -3

Pt−1 > 1 Steady -3 -3 -1 -1

Decreasing -1 -1 0 0

Increasing 0 0 1 1

Pt−1 < 1 Steady 1 1 3 3

Decreasing 3 3 3 3

Figure 13: Maximum Temperature Changes From Pt−1, Demand for Soil Changes and RD
t−1

30

8.12.2 Morning

The Temperature increases logarithmically in each block of the Morning of t based on hmax
t , Q, and

a control variable (σ), such that σ ∈ Z+, as:

htq =


1 if q = 0

max(hmax
t ∗ logQσ+1(qσ + 1), 1) if 0 < q < Q

hmax
t else

Thus, Beanstalk changes the Temperature to regularly cross the price of 1 over its value peg during
long run decreases and increases in demand for Beans.

8.13 Flood

Beanstalk sells newly minted Beans on the open market during long run increases in demand for
Beans when increasing the Bean supply and lowering the Maximum Temperature has not crossed
the average nor current prices of 1 over its value peg at the end of a Season.

If V < Pt−1, it is Raining. If it is Raining and RD
t−1 < RDlower

, it Floods at the beginning of the
next Season. At the beginning of each Season during a Flood, Beanstalk returns the price of 1 in
each liquidity pool on the Flood Whitelist to its value peg by minting additional Beans and selling
them directly in the pools. Liquidity pools can be added to and removed from the Flood Whitelist
via Beanstalk governance. Proceeds from the sale are distributed to Stalkholders at the beginning of
t in proportion to their Stalk holdings when it began to Flood. At the beginning of the first Season
after the Flood began, all Pods that grew from Beans Sown before the Flood Ripen and become
Harvestable.

The number of Beans that are minted and sold to return the price of 1 to its value peg (∆Bt−1),
such that ∆Bt−1 ∈ {j×10−6 | j ∈ N}, is calculated from the sum of differences between the optimal
number of Beans and the number of Beans in each :y liquidity pool on the Flood Whitelist at the
end of the previous Season.

In a Flood, mt for a given number of Unharvestable Pods that grew prior to the Flood (Dγ), such
that Dγ ∈ {j × 10−6 | j ∈ N}, at, ∆Bt−1, and ∆Bt−1 is:

mt = Dγ + at +∆Bt−1 +∆Bt−1

Thus, Beanstalk regularly crosses the price of 1 over its value peg during both long run increases
and decreases in demand for Beans.

9 Market

Current DEXs are unable to attract liquidity without offering protocol-native emissions derived pri-
marily from AMM trading fees. Beanstalk’s ability to attract liquidity without fee-based emissions
allows it to create a DEX without trading fees. The Market is the Beanstalk-native DEX. Specifica-
tions of the Market are outside the scope of this whitepaper. For information on the Market, refer
to the Appendix.

31

10 Depot

Current complex interactions with Ethereum-native protocols are tedious, cumbersome and expen-
sive. The Depot facilitates complex, gas-efficient interactions with other Ethereum-native protocols
in a single transaction. Any protocol with a Pipeline to the Depot can be used via Beanstalk in a
single transaction. Pipelines to the Depot can be added via Beanstalk governance. The specifica-
tions of specific Pipelines are outside the scope of this whitepaper. For information on the Depot,
refer to the Appendix.

11 Economics

Beanstalk is designed from economic first principles to increase trustlessness, stability and liquidity
over time.

11.1 Ownership Concentration

A design that lowers the Gini coefficient48 of Beans and Stalk over time is essential to censorship
resistance.

Older Deposits have their Stalk from Seeds diluted relative to newer Deposits every Season. There-
fore, newly minted Beans are more widely distributed over time.

Beanstalk does not require a pre-mine. The first 100 Beans are created when the init function is
called to deploy Beanstalk.

11.2 Strong Credit

Beanstalk is credit based and only fails if it can no longer attract creditors. A reasonable level of
debt, strong credit history and competitive interest rate attract creditors.

Beanstalk changes the Temperature to return RD to RD∗
while regularly crossing the price of 1

over its value peg. Beanstalk acts more aggressively when RD is excessively high or low.

Beanstalk never defaults on debt and is willing to issue Pods every Season.

11.3 Marginal Rate of Substitution

There are a wide variety of opportunities Beanstalk has to compete with for creditors. Therefore,
Beanstalk does not define an optimal Temperature, but instead adjusts it to move closer to ideal
equilibrium.

11.4 Low Friction

Minimizing the cost of using Beans and barriers to the Farm maximize utility for users and appeal
to creditors. The Depot realizes the full benefits of composability on Ethereum.

48 wikipedia.org/wiki/Gini coefficient

32

http://wikipedia.org/wiki/Gini_coefficient

The FIFO Pod Harvest schedule allows smaller Sowers to participate in peg maintenance and de-
creases the benefit of large scale price manipulation. The combination of non-expiry, the FIFO
Harvest schedule, transferability and a liquid secondary market (see Appendix) enables Sowers to
Sow Beans as efficiently as possible. By maximizing the efficiency of the Soil market, Beanstalk
minimizes its cost to attract creditors, the durations and magnitudes of price deviations below its
value peg, and excess Pod issuance.

11.5 Equilibrium

Equilibrium is a state of equivalent marginal quantity supplied and demanded. Beanstalk affects
the supply of and demand for Beans to regularly cross the equilibrium price of 1 over its value peg.

While Beanstalk can arbitrarily increase the Bean supply when the equilibrium price of 1 is above
its value peg, Beanstalk cannot arbitrarily decrease the Bean supply when the equilibrium price of
1 is below it. Beanstalk relies on the codependence between the equilibria of Beans and Soil to

work around this limitation.

In order to Sow Beans, they must be acquired (i.e., marginal demand for Soil affects marginal
demand for Beans). The marginal demand for Soil and Beans are functions of the Temperature and
the Bean price. By changing the Temperature, Beanstalk affects decreases in the Bean supply and
changes in demand for Beans.

11.6 Incentives

Beanstalk-native financial incentives consistently increase trustlessness, stability and liquidity over
time by coordinating independently financially motivated actors (i.e, Stalkholders and Sowers).

The Stalk System incentivizes (1) leaving assets Deposited in the Silo continuously by creating
opportunity cost to Withdraw assets from the Silo, (2) adding value to liquidity pools with Beans
by rewarding more Seeds to Deposited LP tokens than Deposited , and (3) returning the price of
1 to its value peg by allowing Conversions within the Silo without forfeiting Stalk.

Beanstalk is governed by Stalkholders. Anyone with Stalk stands to profit from future growth of
Beanstalk, but are not owed anything by Beanstalk.

When Pt < V , there is an incentive to Withdraw assets from the Silo. The Stalk System reduces
this incentive significantly.

When V < Pt, there is an incentive to buy Beans to earn a portion of the upcoming Bean seigniorage.
This is exacerbated when RD is lower. The combination of the commitment to automatically return
the price of 1 to its value peg and distribute proceeds from the sale to current Stalkholders based
on Stalk ownership when the Flood began removes this incentive entirely during Seasons where RD

t−1

is excessively low, and reduces it significantly otherwise.

Thus, Beanstalk consistently increases trustlessness, stability and liquidity over time.

12 Risk

There are numerous risks associated with Beanstalk.49 This is not an exhaustive list.

49 bean.money/disclosures

33

http://bean.money/disclosures

The Beanstalk code base and peg maintenance mechanism are novel. Neither had been tested in
the “real world” prior to the initial Beanstalk deployment. Portions of the Beanstalk code base are
unaudited.50 The open source nature of Beanstalk means that others can take advantage of any bugs,
flaws or deficiencies in Beanstalk and launch identical or very similar stablecoin implementations.
Beanstalk was exploited on April 17th, 2022 and all value in the protocol was stolen or destroyed.

A decentralized implementation of Beanstalk has four external dependencies:

(1) A trustless computer network that supports composability and both fungible and semi-fungible
token standards (e.g., Ethereum and the ERC-20 and ERC-1155 Standards, respectively);

(2) A DEX protocol with an inter-block MEV manipulation resistant oracle that runs on (1) (e.g.,
Basin51 and Multi Flow, respectively);

(3) A liquid, decentralized network-native asset with endogenous value (e.g., ETH); and

(4) A non-network-native exogenous value convertible stablecoin protocol native to (1) that offers
convertibility to its non-network-native exogenous value collateral (e.g., USDC, USDT) that
trades on (2) against (3) with sufficient liquidity.

The current implementation of Beanstalk has four additional external dependencies:

(5) A non-network-native data feed that facilitates reading an inter-block MEV manipulation
resistant price of (3) in V (i.e., the ETH/USD Chainlink data feed52);

(6) A DEX protocol without an inter-block MEV manipulation resistant oracle but with sufficient
liquidity for (3) against (4) (i.e., the ETH:USDC53 and ETH:USDT54 0.05% fee Uniswap V3
pools);

(7) Curve and 3CRV (and therefore, USDC, USDT and DAI), due to the inclusion of the BEAN:3CRV
Curve pool on the Deposit Whitelist; and

(8) Pipeline55, in order to facilitate complex, gas-efficient interactions with other Ethereum-native
protocols in a single transaction.

To date, the Ethereum blockchain is the most developed decentralized smart contract platform and
has an active community. The ERC-20 and ERC-1155 Standards are the most widely used fungible
and semi-fungible token standards, respectively. ETH is the most decentralized, censorship resistant
and liquid asset on the Ethereum network. USDC and USDT are the largest non-network-native ex-
ogenous value convertible USD stablecoin protocols by market capitalization.56 Chainlink is the most
widely used oracle network on Ethereum. Uniswap V3 and Curve are two of the largest Ethereum-
native DEX protocols by depth.57 3CRV is the LP token of one of the largest liquidity pools on
Curve by depth.58 DAI is the largest network-native exogenous value convertible USD stablecoin
protocol by market capitalization (although is now only partially collateralized by network-native
value). In general, open source protocols with large amounts of value on them are high value targets
for exploits. Long track records indicate security.

50 github.com/BeanstalkFarms/Beanstalk-Audits
51 basin.exchange
52 data.chain.link/ethereum/mainnet/crypto-usd/eth-usd
53 info.uniswap.org/#/pools/0x88e6a0c2ddd26feeb64f039a2c41296fcb3f5640
54 info.uniswap.org/#/pools/0x11b815efb8f581194ae79006d24e0d814b7697f6
55 evmpipeline.org
56 defillama.com/stablecoins
57 defillama.com/protocols/dexes
58 curve.fi/#/ethereum/pools

34

https://github.com/BeanstalkFarms/Beanstalk-Audits
http://basin.exchange
http://data.chain.link/ethereum/mainnet/crypto-usd/eth-usd
http://info.uniswap.org/#/pools/0x88e6a0c2ddd26feeb64f039a2c41296fcb3f5640
http://info.uniswap.org/#/pools/0x11b815efb8f581194ae79006d24e0d814b7697f6
http://evmpipeline.org
http://defillama.com/stablecoins
http://defillama.com/protocols/dexes
http://curve.fi/#/ethereum/pools

The code bases of Basin, Multi Flow, and Pipeline are novel. They had not been tested in the “real
world” prior to their initial deployments. Their open source nature means others can exploit any
bugs, flaws, or deficiencies. Although Basin, Multi Flow, and Pipeline have been audited59, it is no
guarantee of security.

We assume the security of the Ethereum blockchain, ERC-20 Standard, ERC-1155 Standard, Basin,
Multi Flow, ETH, USDC, USDT, Chainlink, Uniswap V3, Curve, 3CRV, DAI, and Pipeline.

The Beanstalk price oracle contains exposure to risk related to (1) the centralized nature of Chainlink,
(2) inter-block MEV manipulation of the ETH:USDC and ETH:USDT 0.05% fee Uniswap V3 and
BEAN:3CRV Curve pools, and (3) the underlying collateral of 3CRV (i.e., USDC, USDT and DAI).
There is no guarantee the node operators for the ETH/USD Chainlink data feed report price data
accurately. There is no guarantee that the centralized operators of USDC and USDT will not
ban them from the ETH:USDC and ETH:USDT 0.05% fee Uniswap V3 and 3CRV Curve pools,
although doing so would cause significant financial self-harm. There is no guarantee the centralized
operators of USDC, USDT and DAI hold non-network-native exogenous value worth at least 100%
of all outstanding non-network-native protocol liabilities. Furthermore, the centralized operators
of USDC and USDT may alter their convertibility policies, which would negatively affect their
respective stablecoins as accurate price sources for USD. However, in theory, if the price of 3CRV
falls below V , it would cause some short run excess inflation of the Bean supply until the BEAN:3CRV
Curve pool is removed from theMinting Whitelist, but would not otherwise directly affect Beanstalk.

We assume the accuracy of the ETH/USD Chainlink data feed and the 3CRV Curve pool as price
sources for USD.

59 github.com/BeanstalkFarms/Beanstalk-Audits#ecosystem-reports

35

http://github.com/BeanstalkFarms/Beanstalk-Audits#ecosystem-reports

13 Future Work

Beanstalk is a work in progress. The following are potential improvements that can be incorporated
into Beanstalk as one or more BIPs:

• Governance can be removed entirely.

• Stalk can become liquid to further increase composability and decrease friction.

• Beanstalk can distribute yield received from other protocols by Deposited assets to its Depos-
itor.

• The Silo can support additional token standards.

• The decentralized price oracle is unlikely to remain sufficiently manipulation resistant at scale,
and can be significantly improved.

• The calculation of ∆Bt−1 can account for inaccuracies in the calculation due to frictions (e.g,
AMM trading fees).

• Additional x and Ethereum-native DEXs can be incorporated into Pt−1.

• The mechanism to measure changing demand for Soil, in cases where ∂ut

∂t can inaccurately
indicate changing demand for Soil, can be further refined.

• The Market can be further developed.

• Beanstalk can issue unique assets with different value pegs on Ethereum.

36

14 Appendix

14.1 Current Parameters

The following are the current parameters of Beanstalk:

• ∆Eulower

t = -60;

• ∆Euupper

t = 60;

• Kmin = 108 (i.e., 0.1%);

• Kmin
end = 108 (i.e., 0.1%);

• h1 = 1;

• Q = 25;

• RDlower

= 5× 104 (i.e., 5%);

• RD∗
= 1.5× 105 (i.e., 15%);

• RDupper

= 2.5× 105 (i.e., 25%);

• ∂ut

∂t

lower
= 95%;

• ∂ut

∂t

upper
= 105%;

• Θmin() = 102; and

• σ = 2.

37

14.2 Deposit Whitelist

The following ERC-20 Standard tokens are Whitelisted for Deposit in the Silo:

14.2.1

1. Token Address: The token address (
@
, such that

@ ∈ {j ∈ N | j < 1640}, @
=

0xBEA0000029AD1c77D3d5D23Ba2D8893dB9d1Efab).

2. BDV Function: The BDV of 1 is 1 .

We define f (z) as:

f (z) = z

3. Stalk per BDV: Deposits receive 1 Stalk per BDV upon Deposit (i.e., k = 1).

4. Seeds per BDV: Deposits receive 3 Seeds per BDV upon Deposit (i.e., c = 3).

14.2.2 Φ

1. Token Address: The Φ token address (Φ@, such that Φ@ ∈ {j ∈ N | j < 1640}, Φ@ =
0xc9C32cd16Bf7eFB85Ff14e0c8603cc90F6F2eE49).

2. BDV Function: The BDV of Φ is calculated using the number of Beans (ΦΞ−1), such that

ΦΞ−1 ∈ {j × 10−6 | j ∈ Z+}, and number of 3CRV (Φ3CRV
Ξ−1) in the BEAN:3CRV Curve

pool at the end of the last block, the 3CRV virtual price (P 3CRV), the A parameter of the
pool (ΦA), such that ΦA ∈ {j × 10−2 | j ∈ Z+}, and the Φ virtual price (PΦ), such that
Φ3CRV

Ξ−1 , P 3CRV, PΦ ∈ {j × 10−18 | j ∈ Z+}.
Beanstalk calculates a flash-loan-resistant price invariant for the BEAN:3CRV Curve pool
(ζΦΞ−1), such that ζΦΞ−1 ∈ {j×10−18 | j ∈ Z+}, by calling the Curve60 get D function on ΦΞ−1,
Φ3CRV

Ξ−1 , P 3CRV and ΦA as:

ζΦΞ−1 = get D([ΦΞ−1, Φ3CRV
Ξ−1 × P 3CRV], ΦA)

Beanstalk calculates a flash-loan-resistant total number of Φ (ΦΞ−1), such that ΦΞ−1 ∈ {j ×
10−18 | j ∈ Z+}, from ζΦΞ−1 and PΦ as:

ΦΞ−1 =
ζΦΞ−1

PΦ

Beanstalk calculates the flash-loan-resistant USD price of 1 from the BEAN:3CRV Curve

pool ($
(Φ)

Ξ−1), such that $
(Φ)

Ξ−1 ∈ {j × 10−6 | j ∈ Z+}, by calling the Curve get y function on

ΦΞ−1, Φ
3CRV
Ξ−1 and P 3CRV as:

$
(Φ)

Ξ−1 = ΦΞ−1 − get y(0, 1,ΦΞ−1 + 1, [ΦΞ−1, Φ3CRV
Ξ−1 × P 3CRV])− 10−6

Beanstalk calculates the BDV of 3CRV f3CRV(z3CRV) from $
(Φ)

Ξ−1 and P 3CRV as:

f3CRV(z3CRV) =
z3CRV × P 3CRV

$
(Φ)

Ξ−1

60 etherscan.io/address/0xc9C32cd16Bf7eFB85Ff14e0c8603cc90F6F2eE49#code

38

http://etherscan.io/address/0xc9C32cd16Bf7eFB85Ff14e0c8603cc90F6F2eE49#code

We define fΦ(zΦ) for a given ΦΞ−1, f
3CRV(z3CRV), Φ3CRV

Ξ−1 and ΦΞ−1 as:

fΦ(zΦ) =
zΦ × (ΦΞ−1 + f3CRV(Φ3CRV

Ξ−1))

ΦΞ−1

3. Stalk per BDV: Φ Deposits receive 1 Stalk per BDV upon Deposit (i.e., kΦ = 1).

4. Seeds per BDV: Φ Deposits receive 3.25 Seeds per BDV upon Deposit (i.e., cΦ = 3.25).

14.2.3 z

1. Token Address: The z token address (z
@

, such that z
@ ∈ {j ∈ N | j < 1640}, z @

=
0x1BEA0050E63e05FBb5D8BA2f10cf5800B6224449).

2. BDV Function: The BDV of z is calculated using f (z), R and Z .

We define f z (zz) as:

f z (zz) = f

(
zz ×R

Z

)

3. Stalk per BDV: Deposits receive 1 Stalk per BDV upon Deposit (i.e., kz = 1).

4. Seeds per BDV: Deposits receive 0 Seeds per BDV upon Deposit (i.e., cz = 0).

14.2.4 zΘ

1. Token Address: The zΘ token address (zΘ
@

, such that zΘ
@ ∈ {j ∈ N | j < 1640}, zΘ@

=
0x1BEA3CcD22F4EBd3d37d731BA31Eeca95713716D).

2. BDV Function: The BDV of zΘ is calculated using fΘ(zΘ) (defined below), RΘ and ZΘ.

We define f zΘ(zz
Θ

) as:

f zΘ(zz
Θ

) = fΘ

(
zz

Θ ×RΘ

ZΘ

)

3. Stalk per BDV: zΘ Deposits receive 1 Stalk per BDV upon Deposit (i.e., kz
Θ

= 1).

4. Seeds per BDV: zΘ Deposits receive 0 Seeds per BDV upon Deposit (i.e., cz
Θ

= 0).

14.2.5 Θ

1. Token Address: The Θ token address (Θ@, such that Θ@ ∈ {j ∈ N | j < 1640}, Θ@ =
0xBEA0e11282e2bB5893bEcE110cF199501e872bAd).

2. BDV Function: The BDV of Θ is calculated using the inter-block MEV manipulation resis-
tant instantaneous Bean reserves (ΘEMA

,⅁), such that ΘEMA
,⅁ ∈ {j × 10−6 | j ∈ Z+}, and ETH

reserves (ΘEMA
ETH,⅁), such that ΘEMA

ETH,⅁ ∈ {j × 10−18 | j ∈ Z+}, in the Multi Flow Pump of the
BEAN:ETH Well in the current transaction.

39

Beanstalk calculates the inter-block MEV manipulation resistant derivative of the Θ LP token
supply with respect to Beans (∂Θ∂), such that ∂Θ

∂ ∈ {j × 10−18 | j ∈ Z+}, by calling the
Constant Product 2 Well Function61 calcLpTokenSupply function with ΘEMA

,⅁ , ΘEMA
ETH,⅁ and

the data associated with the Well Function (Θ∗) as:

∂Θ

∂
= calcLpTokenSupply([ΘEMA

,⅁ −1, ΘEMA
ETH,⅁], Θ

∗)−calcLpTokenSupply([ΘEMA
,⅁ , ΘEMA

ETH,⅁], Θ
∗)

We define fΘ(zΘ) for a given ΘEMA
,⅁ , Θmin() and ∂Θ

∂ as:

fΘ(zΘ) =

{
FAIL if ΘEMA

,⅁ < Θmin()

zΘ×106
∂Θ

∂

else

3. Stalk per BDV: Θ Deposits receive 1 Stalk per BDV upon Deposit (i.e., kΘ = 1).

4. Seeds per BDV: Θ Deposits receive 4.5 Seeds per BDV upon Deposit (i.e., cΘ = 4.5).

61 etherscan.io/address/0xBA510C20FD2c52E4cb0d23CFC3cCD092F9165a6E#code

40

http://etherscan.io/address/0xBA510C20FD2c52E4cb0d23CFC3cCD092F9165a6E#code

14.3 Former Governance

The following has been removed from Section 5.5 Governance as part of the updates to reflect
Beanstalk’s current permissioned governance system and is left here to contribute to the discussion
around a future permissionless governance system.

The submitter of a BIP automatically votes in favor of the BIP, cannot rescind their vote, and
cannot have less than Kmin of total outstanding Stalk after an interaction with the Silo, until the
end of the Voting Period.

When a BIP passes or has a two-thirds majority, it must be manually committed to the Ethereum
blockchain. To encourage prompt commitment of BIPs even during periods of congestion on the
Ethereum network while minimizing cost, the award for successful commitment starts at 100 Beans
and compounds 1% every additional six seconds that elapse past the end of its Voting Period (EBIP)
for 1,800 seconds.

The award for successfully committing an approved BIP (aq), such that aq ∈ {j × 10−6 | j ∈ Z+},
with a given timestamp of commitment (Eq) and EBIP is:

aq = 100× 1.01
min

{⌊
Eq−EBIP

6

⌋
, 300

}

To minimize the cost of calculating aq, Beanstalk uses a binomial estimation with a margin of error
of less than 0.05%. When a BIP is committed with a two-thirds supermajority before the end of its
Voting Period, aq = 100.

41

14.4 Convert Whitelist

The following Conversions within the Silo are Whitelisted:

14.4.1 λ → λ

1. From Token Address: The from token address must match the to token address.

2. To Token Address: The to token address must match the from token address.

3. Conditions: Deposited λ can be Converted to a λ Deposit at anytime.

4. Convert Function: The number of λ received for Converting Deposited λ within the Silo is
equivalent to the number of λ Converted. Therefore, we define function as:

fλ→λ(zλ) = zλ

14.4.2 → Φ

1. From Token Address:
@

2. To Token Address: Φ@

3. Conditions: Deposited cannot be Converted to Deposited Φ when the USD price of 1 in
the pool ($ (Φ)), such that $ (Φ) ∈ {j × 10−6 | j ∈ Z+}, is below $1 (i.e, $ (Φ) < 106).

$ (Φ) is calculated using the number of Beans (Φ), such that Φ ∈ {j × 10−6 | j ∈ Z+}, and
number of 3CRV (Φ3CRV), such that Φ3CRV ∈ {j×10−18 | j ∈ Z+}, in the BEAN:3CRV Curve
pool, P 3CRV, ΦA and PΦ.

Beanstalk calculates a price invariant for the BEAN:3CRV Curve pool (ζΦ), such that ζΦ ∈
{j × 10−18 | j ∈ Z+}, by calling the Curve get D function with Φ , Φ3CRV, P 3CRV and ΦA as:

ζΦ = get D([Φ , Φ3CRV × P 3CRV], ΦA)

Beanstalk calculates a total number of Φ, such that Φ ∈ {j × 10−18 | j ∈ Z+}, from ζΦ and
PΦ as:

Φ =
ζΦ

PΦ

Beanstalk calculates the $ (Φ) by calling the Curve get y function with Φ , Φ3CRV and P 3CRV

as:

$ (Φ) = Φ − get y(0, 1,Φ + 1, [Φ , Φ3CRV × P 3CRV])− 10−6

4. Convert Function: The number of Φ received for Converting Deposited Beans within the
Silo for a given minimum Φ received (Φmin), such that Φmin ∈ {j × 10−18 | j ∈ N}, is the
result of calling the Curve add liquidity function on Φ with Φmin as:

f →Φ(z) = Φ.add liquidity([z , 0], Φmin)

42

14.4.3 Φ →

1. From Token Address: Φ@

2. To Token Address:
@

3. Conditions: Deposited Φ cannot be Converted to Deposited when the price of 1 in the
pool is greater than or equal to $1 (i.e, 106 ≤ $ (Φ)).

4. Convert Function: The number of Beans received for Converting Deposited Φ within the

Silo for a given minimum Beans received (
min

), such that
min ∈ {j × 10−6 | j ∈ N}, is the

result of calling the Curve remove liquidity one coin function on Φ with
min

as:

fΦ→ (zΦ) = Φ.remove liquidity one coin(zΦ, 0,
min

)

14.4.4 z → zΘ

1. From Token Address: z
@

2. To Token Address: zΘ
@

3. Conditions: Deposited z cannot be Converted to Deposited zΘ when the USD price of 1
in the BEAN:ETH Well ($ (Θ)), such that $ (Θ) ∈ {j × 10−6 | j ∈ Z+}, is below $1 (i.e,
$ (Θ) < 106).

$ (Θ) is calculated using the number of Beans (Θ⅁), such that Θ⅁ ∈ {j × 10−6 | j ∈ Z+}, and
number of ETH (ΘETH

⅁), such that ΘETH
⅁ ∈ {j × 10−18 | j ∈ Z+}, in the BEAN:ETH Well’s

Reserves in the current transaction and $ETH.

Therefore, we define $ (Θ) for a given (1) output of the Well Implementation62 getSwapOut

function with Θ⅁ and ΘETH
⅁ , and (2) $ETH as:

$ (Θ) =
getSwapOut(Θ⅁, ΘETH

⅁ , 1)× 106

$ETH

4. Convert Function: The number of zΘ received for Converting Deposited z within the Silo
for a given ZΦ⊗, Z , RΘ, R , minimum Unripe Θ received (zΘ

min

), such that zΘ
min ∈ {j ×

10−6 | j ∈ N}, @
and block.timestamp63 is the result of calling the Well Implementation64

addLiquidity function on Θ as:

f z →zΦ(zz) =
S× ZΦ⊗ × Z

7.7× 10×RΘ ×R
×Θ.addLiquidity([

zz ×R

Z
, 0], zΘ

min

,
@
, block.timestamp)

14.4.5 zΘ → z

1. From Token Address: zΘ
@

2. To Token Address: z
@

62 etherscan.io/address/0xBA510e11eEb387fad877812108a3406CA3f43a4B#code
63 docs.soliditylang.org/en/v0.7.6/units-and-global-variables.html#block-and-transaction-properties
64 etherscan.io/address/0xBA510e11eEb387fad877812108a3406CA3f43a4B#code

43

http://etherscan.io/address/0xBA510e11eEb387fad877812108a3406CA3f43a4B#code
http://docs.soliditylang.org/en/v0.7.6/units-and-global-variables.html#block-and-transaction-properties
http://etherscan.io/address/0xBA510e11eEb387fad877812108a3406CA3f43a4B#code

3. Conditions: Deposited zΘ cannot be Converted to Deposited z when the price of 1 in the
BEAN:ETH Well is greater than or equal $1 (i.e, 106 ≤ $ (Θ)).

4. Convert Function: The number of z received for Converting Deposited zΘ within the Silo

for a given ZΘ, S, ZΦ⊗, RΘ,
@
, minimum Unripe Beans received (z

min

), such that z
min ∈

{j×10−6 | j ∈ N}, @
and block.timestamp is the result of calling the Well Implementation65

removeLiquidityOneToken function on Θ as:

f zΘ→z (zz
Θ

) =
7.7× 10× ZΘ

S× ZΦ⊗ ×Θ.removeLiquidityOneToken([
zz

Θ ×RΘ

ZΘ
],

@
, z

min

,
@
, block.timestamp)

14.4.6 → Θ

1. From Token Address:
@

2. To Token Address: Θ@

3. Conditions: Deposited cannot be Converted to Deposited Θ when the USD price of 1 in
the BEAN:ETH Well is below $1 (i.e, $ (Θ) < 106).

4. Convert Function: The number of Θ received for Converting Deposited Beans within the

Silo for a given minimum Θ received (Θmin), such that Θmin ∈ {j × 10−18 | j ∈ N}, @
and

block.timestamp is the result of calling the Well Implementation addLiquidity function on
Θ as:

f →Θ(z) = Θ.addLiquidity([z , 0], Θmin,
@
, block.timestamp)

14.4.7 Θ →

1. From Token Address: Θ@

2. To Token Address:
@

3. Conditions: Deposited Θ cannot be Converted to Deposited when the price of 1 in the
BEAN:ETH Well is less than or equal to $1 (i.e, 106 ≤ $ (Θ)).

4. Convert Function: The number of received for Converting Deposited Θ within the Silo

for a given
@
,

min
,

@
and block.timestamp is the result of calling the Well Implementation

removeLiquidityOneToken function on Θ as:

fΘ→ (zΘ) = Θ.removeLiquidityOneToken(zΘ,
@
,

min
,

@
, block.timestamp)

65 etherscan.io/address/0xBA510e11eEb387fad877812108a3406CA3f43a4B#code

44

http://etherscan.io/address/0xBA510e11eEb387fad877812108a3406CA3f43a4B#code

14.5 Barn

The following ERC-20 Standard tokens were Whitelisted for Deposit in the Silo at the end of the
block prior to the Exploit. Upon Replant, Stalkholders at the end of the block prior to the Exploit
received Stalk and Seeds based on their Deposits at the end of the block prior to the Exploit.
All non-Bean Deposits are credited with 4 Seeds per BDV upon Deposit, independent of cλ. The
previous cλ, total supply and BDV of each token at the end of the block prior to the Exploit have
been included for reference.

14.5.1 Old

1. Token Address: The old token address is 0xDC59ac4FeFa32293A95889Dc396682858d52e5Db.

2. BDV Function: The BDV of 1 is 1 .

Therefore, we defined f (z) as:

f (z) = z

3. Stalk per BDV: Deposits received 1 Stalk per BDV upon Deposit (i.e., k = 1).

4. Seeds per BDV: Deposits received 2 Seeds per BDV upon Deposit (i.e., c = 2).

5. Total Supply: There were 108155457.359439 old at the end of the block prior to the Exploit.

6. BDV Per Token: The BDV per old at the end of the block prior to the Exploit was 1.

14.5.2 Old BEAN:ETH Uniswap V2 LP Tokens (ℶ)

1. Token Address: The ℶ token address is 0x87898263b6c5babe34b4ec53f22d98430b91e371.

2. BDV Function: The BDV of ℶ was calculated using the last traded price in the old
BEAN:ETH Uniswap v2 pool unless there was an interaction with the pool in the current
block. The last traded price was a function of the current number of Beans in the pool (ℶ),
such that ℶ ∈ {j × 10−6 | j ∈ Z+}. If there was an interaction with the pool in the current
block, Beanstalk used the time weighted average number of Beans in the pool from the start
of the current Season to the current block (ℶ

t
), such that ℶ

t
∈ {j× 10−6 | j ∈ Z+} unless the

gm function was also called in the current block. If there was an interaction with the pool and
the gm function was called in the current block, ℶ Deposits are not accepted.

Therefore, we defined fℶ(zℶ) for a given timestamp of the last interaction with the pool (Eℶ),
current block timestamp (E∗

Ξ), Et, ℶt
, the current total number of ℶ in the current block (ℶ),

such that ℶ ∈ {j × 10−18 | j ∈ Z+}, and ℶ as:

fℶ(zℶ) =



FAIL if Eℶ = E∗
Ξ && E∗

Ξ = Et

zℶ × 2× ℶ
t

ℶ
if Eℶ = E∗

Ξ

zℶ × 2× ℶ
ℶ

else

3. Stalk per BDV: ℶ Deposits received 1 Stalk per BDV upon Deposit (i.e., kℶ = 1).

4. Seeds per BDV: ℶ Deposits received 4 Seeds per BDV upon Deposit (i.e., cℶ = 4).

5. Total Supply: There were 0.540894218294675521 ℶ at the end of the block prior to the
Exploit.

45

6. BDV Per Token: The BDV per ℶ at the end of the block prior to the Exploit was
119,894,802.186829.

14.5.3 Old BEAN:3CRV Curve LP Tokens (ℸ)

1. Token Address: The ℸ token address is 0x3a70DfA7d2262988064A2D051dd47521E43c9BdD.

2. BDV Function: The BDV of ℸ was calculated using the number of Beans (ℸΞ−1), such that

ℸΞ−1 ∈ {j × 10−6 | j ∈ Z+}, and number of 3CRV (ℸ3CRV
Ξ−1) in the old BEAN:3CRV Curve

pool at the end of the last block, P 3CRV, the A parameter of the pool (ℸA), such that ℸA ∈
{j×10−2 | j ∈ Z+}, and the ℸ virtual price (Pℸ), such that ℸ3CRV

Ξ−1 , Pℸ ∈ {j×10−18 | j ∈ Z+}.
Beanstalk calculated a flash-loan-resistant price invariant for the old BEAN:3CRV Curve pool
(ζℸ), such that ζℸ ∈ {j × 10−18 | j ∈ Z+}, by calling the Curve get D function on ℸΞ−1,
ℸ3CRV
Ξ−1 , P 3CRV and ℸA as:

ζℸ = get D([ℸΞ−1, ℸ3CRV
Ξ−1 × P 3CRV], ℸA)

Beanstalk calculated a flash-loan-resistant total number of ℸ (ℸΞ−1), such that ℸΞ−1 ∈ {j ×
10−18 | j ∈ Z+}, from ζℸ and Pℸ as:

ℸΞ−1 =
ζℸ

Pℸ

Beanstalk calculated the USD price of 1 from the old BEAN:3CRV Curve pool ($ (ℸ)), such
that $ (ℸ) ∈ {j × 10−6 | j ∈ Z+}, by calling the Curve get y function on ℸΞ−1, ℸ3CRV

Ξ−1 and
P 3CRV as:

$ (ℸ) = ℸΞ−1 − get y(0, 1,ℸΞ−1 + 1, [ℸΞ−1, ℸ3CRV
Ξ−1 × P 3CRV])− 10−6

Beanstalk calculated f3CRV(z3CRV) from $ (ℸ) and P 3CRV as:

f3CRV(z3CRV) =
z3CRV × P 3CRV

$ (ℸ)

We defined fℸ(zℸ) for a given ℸΞ−1, f
3CRV(z3CRV), ℸ3CRV

Ξ−1 and ℸΞ−1 as:

fℸ(zℸ) =
zℸ × (ℸΞ−1 + f3CRV(ℸ3CRV

Ξ−1))

ℸΞ−1

3. Stalk per BDV: ℸ Deposits received 1 Stalk per BDV upon Deposit (i.e., kℸ = 1).

4. Seeds per BDV: ℸ Deposits received 4 Seeds per BDV upon Deposit (i.e., cℸ = 4).

5. Total Supply: There were 79284313.822927052565331157 ℸ at the end of the block prior to
the Exploit.

6. BDV Per Token: The BDV per ℸ at the end of the block prior to the Exploit was 0.992035.

46

14.5.4 Old BEAN:LUSD Curve LP Tokens (ג)

1. Token Address: The ג token address is 0xD652c40fBb3f06d6B58Cb9aa9CFF063eE63d465D.

2. BDV Function: The BDV of ג was calculated using the number of LUSD (ΩLUSD
Ξ−1) and

number of 3CRV (Ω3CRV
Ξ−1) in the LUSD:3CRV Curve pool (Ω) at the end of the last block,

P 3CRV, the A parameter of the pool (ΩA), such that ΩA ∈ {j × 10−2 | j ∈ Z+}, P 3CRV and
$ (ℸ), the Ω virtual price (PΩ), the ג virtual price (P ,(ג such that ΩLUSD

Ξ−1 , Ω3CRV
Ξ−1 , PΩ, P ג ∈

{j × 10−18 | j ∈ Z+}, P 3CRV and $ (ℸ).

Beanstalk calculated a flash-loan-resistant price invariant for the LUSD:3CRV Curve pool (ζΩ),
such that ζΩ ∈ {j × 10−18 | j ∈ Z+}, by calling the Curve get D function on ΩLUSD

Ξ−1 , Ω3CRV
Ξ−1 ,

P 3CRV and ΩA as:

ζΩ = get D([ΩLUSD
Ξ−1 , Ω3CRV

Ξ−1 × P 3CRV], ΩA)

Beanstalk calculated a flash-loan-resistant total number of Ω (ΩΞ−1), such that ΩΞ−1 ∈ {j ×
10−18 | j ∈ Z+}, from ζΩ and PΩ as:

ΩΞ−1 =
ζΩ

PΩ

Beanstalk calculated the USD price of 1 LUSD from the LUSD:3CRV Curve pool ($LUSD(Ω)),
such that $LUSD(Ω) ∈ {j × 10−6 | j ∈ Z+}, by calling the Curve get y function on ΩLUSD

Ξ−1 ,
Ω3CRV

Ξ−1 and P 3CRV as:

$LUSD(Ω) = ΩLUSD
Ξ−1 − get y(0, 1,ΩLUSD

Ξ−1 + 1, [ΩLUSD
Ξ−1 , Ω3CRV

Ξ−1 × P 3CRV])− 10−6

We defined fג(zג) for a given P ,ג $LUSD(Ω) and $ (ℸ) as:

fג(zג) = zג × P ג ×min

(
1,

$LUSD(Ω)

$ (ℸ)

)
3. Stalk per BDV: ג Deposits received 1 Stalk per BDV upon Deposit (i.e., kג = 1).

4. Seeds per BDV: ג Deposits received 3 Seeds per BDV upon Deposit (i.e., cג = 3).

5. Total Supply: There were 1637956.191657208904972868 ג at the end of the block prior to
the Exploit.

6. BDV Per Token: The BDV per ג at the end of the block prior to the Exploit was 0.983108.

47

14.6 Minting Whitelist

The following liquidity pools are Whitelisted for inclusion in the calculation of ∆Bt−1:

14.6.1 Φ

1. Pool Address: Φ@

2. ∆bt−1 Calculation: The liquidity and time weighted average shortage or excess of Beans in

the BEAN:3CRV Curve liquidity pool over the previous Season (∆bΦ
t−1

) is calculated as the

difference between the optimal liquidity and time weighted average number of Beans (Φ
∗

t−1
)

and the liquidity and time weighted average number of Beans (Φ
t−1

) in Φ over the previous

Season, such that ∆bΦ
t−1

, Φ
∗

t−1
, Φ

t−1
∈ {j × 10−6 | j ∈ Z+}. Φ

∗

t−1
is calculated from Φ

t−1
,

the time weighted average number of 3CRV in Φ over the previous Season (Φ3CRV
t−1

), such that

Φ3CRV
t−1

∈ {j×10−18 | j ∈ Z+}, P 3CRV and ΦA. The absolute value of ∆bΦ
t−1

is at most 1% of the

Bean supply at the end of the previous Season (Bt−1), such that Bt−1 ∈ {j × 10−6 | j ∈ Z+}.
Beanstalk calculates a liquidity and time weighted average price invariant for Φ over the
previous Season (ζΦ

t−1
), such that ζΦ

t−1
∈ {j × 10−18 | j ∈ Z+}, by calling the Curve get D

function on Φ
t−1

, Φ3CRV
t−1

, P 3CRV and ΦA as:

ζΦ
t−1

= get D([Φ
t−1

, Φ3CRV
t−1

× P 3CRV], ΦA)

Beanstalk calculates Φ
∗

t−1
from ζΦ

t−1
as:

Φ
∗

t−1
=

ζΦ
t−1

2

Beanstalk calculates ∆bΦ
t−1

for a given Φ
∗

t−1
, Φ

t−1
and Bt−1 as:

∆bΦ
t−1

=


max

(
Φ

∗

t−1
− Φ

t−1
,−Bt−1

100

)
if Φ

∗

t−1
− Φ

t−1
< 0

min
(
Φ

∗

t−1
− Φ

t−1
, Bt−1

100

)
else

14.6.2 Θ

1. Pool Address: Θ@

2. ∆bt−1 Calculation: The liquidity and time weighted average shortage or excess of Beans in

the BEAN:ETH Well over the previous Season (∆bΘ
t−1

) is calculated as the difference between
the optimal liquidity and time weighted average number of Beans in Θ over the previous Season
(Θ

∗

t−1
), such that ∆bΘ

t−1
, Θ

∗

t−1
∈ {j × 10−6 | j ∈ Z+}, and ΘSMA

,t0,⅁. The absolute value of

∆bΘ
t−1

is at most 1% of Bt−1.

Beanstalk calculates Θ
∗

t−1
by calling the Well Function66 calcReserveAtRatioSwap function

with ΘSMA
,t0,⅁, Θ

SMA
ETH,t0,⅁ and Θ∗ as:

Θ
∗

t−1
= calcReserveAtRatioSwap([ΘSMA

,t0,⅁, ΘSMA
ETH,t0,⅁], 0, [106, 1018], Θ∗)

66 etherscan.io/address/0xBA510C20FD2c52E4cb0d23CFC3cCD092F9165a6E#code

48

http://etherscan.io/address/0xBA510C20FD2c52E4cb0d23CFC3cCD092F9165a6E#code

Beanstalk calculates ∆bΘ
t−1

for a given ΘSMA
,t0,⅁, Θ

min(), Θ
∗

t−1
and Bt−1 as:

∆bΘ
t−1

=



0 if ΘSMA
,t0,⅁ < Θmin()

max
(
Θ

∗

t−1
−ΘSMA

,t0,⅁,−
Bt−1

100

)
if Θ

∗

t−1
−ΘSMA

,t0,⅁ < 0

min
(
Θ

∗

t−1
−ΘSMA

,t0,⅁,
Bt−1

100

)
else

Therefore, we define ∆Bt−1 for a given ∆bΦ
t−1

and ∆bΘ
t−1

as:

∆Bt−1 = ∆bΦ
t−1

+∆bΘ
t−1

49

14.7 Flood Whitelist

At the beginning of each Season during a Flood, Beanstalk returns the price of 1 in each of the
following liquidity pools to their value pegs by minting additional Beans and selling them directly
in the pools:

14.7.1 Φ

1. Pool Address: Φ@

2. ∆bt−1 Calculation: The shortage of Beans in the BEAN:3CRV Curve liquidity pool at the
end of the previous Season (∆bΦt−1) is calculated as the difference between the optimal number

of Beans (Φ
∗

t−1) and the number of Beans (Φt−1) in Φ at the end of the previous Season, such

that ∆bΦt−1, Φ
∗

t−1, Φt−1 ∈ {j × 10−6 | j ∈ Z+}. Φ
∗

t−1 is calculated from Φt−1, the number of
3CRV in Φ at the end of the previous Season (Φ3CRV

t−1), such that Φ3CRV
t−1 ∈ {j×10−18 | j ∈ Z+},

P 3CRV and ΦA.

Beanstalk calculates a price invariant for Φ at the end of the previous Season (ζΦt−1), such that

ζΦt−1 ∈ {j × 10−18 | j ∈ Z+}, by calling the Curve get D function on Φt−1, Φ
3CRV
t−1 , P 3CRV and

ΦA as:

ζΦt−1 = get D([Φt−1, Φ3CRV
t−1 × P 3CRV], ΦA)

Beanstalk calculates Φ
∗

t−1 from ζΦt−1 as:

Φ
∗

t−1 =
ζΦt−1

2

Beanstalk calculates ∆bΦt−1 for a given Φ
∗

t−1 and Φt−1 as:

∆bΦt−1 = Φ
∗

t−1 − Φt−1

Therefore, we define ∆Bt−1 for a given ∆bΦt−1 as:

∆Bt−1 =
⌈
∆bΦt−1

⌉

50

14.8 Market

Beanstalk supports the following exchanges on the Market:

14.8.1 Pods

Pods can be bought and sold in a decentralized fashion at the Pod Market.

14.8.1.1 Pod Orders

Anyone with Beans not in the Silo can Order Pods.

A Pod Order has four inputs:

1. The maximum number of Pods to be purchased;

2. The maximum place in the Pod Line (i.e., the number of Pods that will become Harvestable
before a given Pod) to purchase from;

3. The minimum number of Pods that can Fill the Pod Order; and

4. Either (a) a constant that represents the maximum price per Pod or (b) a piecewise polynomial
function that determines the price per Pod by its current place in the Pod Line, denominated
in Beans.

A Pod Order can be Cancelled at any time until it is entirely Filled. To facilitate instant clearance,
Beans are locked in a Pod Order until it is entirely Filled or Cancelled. Beans can only be locked
in a single Pod Order at a time.

14.8.1.2 Pod Listings

Pods that Yield from Beans that were Sown from a single call of the sow function form a Plot.
Anyone with a Plot can List a whole or partial Plot to be sold for Beans.

A Pod Listing has six inputs:

1. The Plot being Listed;

2. The difference between the front of the portion of the Plot included in the Pod Listing from
the front of the whole Plot, denominated in Pods, where a null input Lists from the back of
the Plot;

3. The number of Pods in the Plot for sale, where a null input Lists the whole Plot;

4. The minimum number of Pods that can Fill the Pod Listing ;

5. The maximum number of total Harvestable Pods over all Seasons before the Pod Listing
expires; and

6. Either (a) a constant that represents the minimum price per Pod or (b) a piecewise polynomial
function that determines the price per Pod by its current place in the Pod Line, denominated
in Beans.

51

A Pod Listing can be Cancelled at any time until it is entirely Filled. Plots can only be Listed in
a single Pod Listing at a time. Pod Listings are automatically Cancelled if the owner of the Plot
transfers, or simultaneously includes in another Listing, any Pods in the Plot.

14.8.1.3 Clearance

An outstanding Pod Order can be entirely or partially Filled at any time by a Pod seller. If the
Pod Order is partially Filled, the rest of the Pod Order remains Ordered. Similarly, an outstanding
Pod Listing can be entirely or partially Filled at any time by a Pod buyer. If the Pod Listing is
partially Filled, the rest of the Pod Listing remains Listed.

In instances where 0 < ∆Dt causes a Pod Order and Pod Listing that previously were not over-
lapping to overlap, either the buyer or seller can Fill their Order or Listing, respectively, at their
preferred price.

14.8.1.4 Future Work

The Pod Market is a work in progress. The following are potential improvements that can be
implemented as one or more BIPs.

• Multiple Plots can be Listed in the same Pod Listing.

• Transferring or Listing Pods not Listed in a partial Listing should not Cancel the Listing.

• Overlapping Pod Orders and Pod Listings can be cleared automatically.

• Deposited Beans can be used to place Pod Orders.

52

14.9 Depot

The following Pipelines to the Depot currently exist:

14.9.1 Curve

The Curve Pipeline allows anyone to call functions in any pool registered in any of the following
Curve registries.

• 0xB9fC157394Af804a3578134A6585C0dc9cc990d467

• 0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f568

• 0x8F942C20D02bEfc377D41445793068908E2250D069

The following functions to interact with Curve pools can be called through the Curve Pipeline.

• exchange(...)

• exchange underlying(...)

• add liquidity(...)

• remove liquidity(...)

• remove liquidity imbalanced(...)

• remove liquidity one token(...)

14.9.2 Pipeline

The Pipeline Pipeline allows anyone to perform an arbitrary series of actions in the EVM in a
single transaction by using 0xb1bE0000C6B3C62749b5F0c92480146452D1542370 as a sandbox for
execution.

The following functions to interact with Pipeline can be called through the Pipeline Pipeline.

• pipe(...)

• multiPipe(...)

• advancedPipe(...)

67 etherscan.io/address/0xB9fC157394Af804a3578134A6585C0dc9cc990d4#readContract
68 etherscan.io/address/0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f5#readContract
69 etherscan.io/address/0x8F942C20D02bEfc377D41445793068908E2250D0#readContract
70 etherscan.io/address/0xb1bE0000C6B3C62749b5F0c92480146452D15423#readContract

53

http://etherscan.io/address/0xB9fC157394Af804a3578134A6585C0dc9cc990d4#readContract
http://etherscan.io/address/0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f5#readContract
http://etherscan.io/address/0x8F942C20D02bEfc377D41445793068908E2250D0#readContract
http://etherscan.io/address/0xb1bE0000C6B3C62749b5F0c92480146452D15423#readContract

14.10 Fundraisers

Fundraisers allow Beanstalk to issue Pods in exchange for assets pegged to V other than Beans,
independent of the Soil minting schedule, in order to raise funds to facilitate payments in other
currencies (e.g., to cover the cost of an audit) without directly affecting Beanstalk’s normal peg
maintenance model. Fundraisers are created via Beanstalk Improvement Proposals and mint new
Beans.

Each Fundraiser requires (1) the token address of the token to raise, (2) the number of tokens to
raise (i.e., the number of Beans to mint), and (3) the wallet address to send the tokens to upon
completion of the Fundraiser.

Up to (2) assets pegged to V can be exchanged for 1 Sown Bean’s Yield of Pods each, based on the
Temperature at the time of the contribution to the Fundraiser. Tokens raised via a Fundraiser are
automatically distributed to (3) upon completion of the Fundraiser.

The following Fundraisers have been approved via Beanstalk governance:

14.10.1 Trail of Bits Audit71

1. Token Address: The USDC token address is 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48.

2. Tokens to Raise: The Fundraiser is for 347,440 USDC.

3. Wallet to Send Tokens: The tokens are sent to 0x925753106FCdB6D2f30C3db295328a0A1c5fD1D1
upon completion of the Fundraiser.

14.10.2 Omniscia Audit72

1. Token Address: The USDC token address is 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48.

2. Tokens to Raise: The Fundraiser is for 140,000 USDC.

3. Wallet to Send Tokens: The tokens are sent to 0x925753106FCdB6D2f30C3db295328a0A1c5fD1D1
upon completion of the Fundraiser.

14.10.3 Omniscia Retainer73

1. Token Address: The USDC token address is 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48.

2. Tokens to Raise: The Fundraiser is for 250,000 USDC.

3. Wallet to Send Tokens: The tokens are sent to 0x21DE18B6A8f78eDe6D16C50A167f6B222DC08DF7
upon completion of the Fundraiser.

71 bean.money/bip-4
72 bean.money/bip-5
73 bean.money/bip-10

54

https://bean.money/bip-4
https://bean.money/bip-5
https://bean.money/bip-10

14.11 Glossary

The following conventions are used throughout this paper:

• Lower case Latin letters are unique values;

• Upper case Latin letters are totals or rates;

• Mathfrak style Latin letters are related to the Barn;

• Hebrew letters refer to assets used prior to the Exploit and recapitalized by the Barn;

• Subscripts are time, where t is the current Season, q is the current block of t, Ξ is the end of
the current block, and ⅁ is the current transaction; and

• Superscripts are modifiers.

∆, ∂ and f are ignored for the purposes of categorization and ordering in this glossary.

The following variables and terms are used throughout this paper:

14.11.1 Terms

Active Fertilizer - The number of Fertilizer that have been bought but have not Fertilized all
associated Sprouts;

AMM - Automated market maker;

Available Fertilizer - The number of Fertilizer that can be bought from Beanstalk in exchange
for 1 USDC each;

Barn - The Beanstalk recapitalization facility;

BCM - The Beanstalk Community Multisig ;

BDV - Bean-denominated-value;

BEAN:ETHMigration - Migration of Ripe Φ and Unripe Φ to Ripe Θ and Unripe Θ, respectively.

Beanstalk Community Multisig - The owner of the Beanstalk contract;

Beanstalk Improvement Proposal - A Beanstalk governance proposal;

BIP - A Beanstalk Improvement Proposal;

Burnt - Sent to the null address;

Cancel - Revoke an offer to buy or sell;

Chop - Take an Unripe asset and burn through Beanstalk them to receive a portion of the
associated Ripe asset;

Convert - Exchange one Deposited λ for another, within the Silo;

Convert Whitelist - The whitelist that permissions Conversions within the Silo;

DAO - Decentralized autonomous organization;

DeFi - Decentralized finance;

Deposit - An asset in the Silo;

55

Deposit ID - The concatenation of the λ token address and the maximum Grown Stalk per BDV
of λ at the time of Deposit;

Deposit Whitelist - The whitelist that permissions Deposits into the Silo;

Depositors - A wallet that has Deposited assets into the Silo;

Depot - Portion of the Farm that facilitates interactions with other Ethereum-native protocols
through Beanstalk in a single transaction;

DEX - Decentralized exchange;

Earned - Beans paid to a Stalkholder after the last Season the Stalkholder called the plant

function;

Enroot - Turn Revitalized Stalk and Revitalized Seeds into Stalk and Seeds;

ETH - Ether;

Exploit - The April 17th, 2022, governance exploit of Beanstalk;

Farm - Where Bean peg maintenance and use of Beans take place;

Fertilized - Become redeemable;

Fertilizer - A limited debt issuance;

Field - The Beanstalk credit facility;

FIFO - First in, first out;

Fill - Match an outstanding offer to buy or sell;

Flood - When Beanstalk mints extra Beans and sells them directly in liquidity pools on the
Flood Whitelist;

Flood Whitelist - The whitelist of pools that Beanstalk sells Beans directly in when it mints
extra Beans during a Flood;

Fundraisers - Allow Beanstalk to issue Pods in exchange for assets pegged to V other than Beans,
independent of the Soil minting schedule;

Grow - Stalk being created by Seeds;

Grown Stalk - Stalk that has been created by Seeds and not yet Mown;

Harvest - Redeem;

Harvestable - Redeemable;

Harvested - Redeemed;

Humidity - The interest rate on Fertilizer purchases;

List - Create an offer to sell;

LP tokens - Liquidity pool tokens;

Market - The Beanstalk-native DEX.;

Maximum Soil - The maximum Soil supply at a given block during a Season;

Maximum Temperature - The maximum Temperature Beanstalk is willing to offer during a
Season;

Minimum Soil - The minimum Soil supply at a given block during a Season;

56

Minting Whitelist - The whitelist of pools included in the calculation of ∆Bt−1;

Morning - The first Q blocks of each Season;

Mow - Turn Grown Stalk into Stalk;

Order - Create an offer to buy;

Pause - Stop accepting gm function calls;

Paused - Beanstalk has stopped accepting gm function calls;

Pipeline - A connection between Beanstalk and another Ethereum-native protocol via the Depot;

Plant - Turn Seeds associated with Earned into Seeds by Depositing the Earned in the
current Season;

Plantable Seeds - Seeds that can be Planted;

Plot - Beans Sown from a single call of the sow function;

Pod Line - The order of Pods that will become Harvestable;

Pod Listing - An offer to sell Pods;

Pod Order - An offer to buy Pods;

Pod Rate - The Beanstalk debt level relative to the Bean supply;

Pod Market - A Beanstalk-native DEX for Pods;

Pods - The primary debt asset of Beanstalk;

Raining - V < Pt−1;

Replant - Restart Beanstalk after the governance Exploit;

Revitalized Seeds - Seeds that have become Enrootable;

Revitalized Stalk - Stalk that have become Enrootable;

Rinsable - Redeemable;

Rinsable Sprouts - Redeemable Sprouts;

Rinse - Redeem;

Ripe assets - The assets received upon Chopping Unripe assets;

Ripen - Become Harvestable;

Season - Beanstalk-native discrete time;

Seed - A Beanstalk-native asset that Grow 1× 10−4 Stalk each Season;

Silo - The Beanstalk DAO;

Soil - An offer from Beanstalk to borrow Beans;

Sow - Lend Beans;

Sower - A Beanstalk creditor;

Sown - Lent;

Sprouts - Assets that can be redeemed for 1 if it has been Fertilized;

Stalk System - The Beanstalk-native mechanism for Stalk;

57

Stalk - The Beanstalk-native governance asset;

Stalkholder - A Beanstalk DAO member;

Sun - The Beanstalk-native execution and timekeeping mechanism;

Temperature - The interest rate on Bean loans;

Transfer - Send a Deposited asset;

TWA - Time weighted average;

Unfertilized Sprouts - Sprouts not yet Fertilized by Active Fertilizer;

Unharvestable Pods - Pods that are not yet redeemable;

Unpause - Resume accepting gm function calls;

Unpaused - Beanstalk has resumed accepting gm function calls;

Unripe assets - Assets that can be Chopped to receive Ripe assets;

USD - 1 US Dollar;

Used Fertilizer - The number of Fertilizer that have been bought and Fertilized all associated
Sprouts;

Voting Period - The period of time Stalkholders can vote on a BIP;

Withdraw - Remove from the Silo; and

Yield - Pods being created from Sown .

14.11.2 Latin Alphabet Variables

ABIP - The total aBIP for all passed BIPs;

Aq - The total awards for all committed BIPs;

aBIP - The award for submitting a BIP that gets accepted;

aq - The award for successfully committing an approved BIP in Former Governance;

at - The award for successfully calling the gm function for t;

B - The total Bean supply;

BBIP - The total Beans minted via BIPs;

Bt−1 - The Bean supply at the end of the previous Season;

∆Bt−1 - The number of Beans that are minted and sold to return the price of 1 to its value
peg;

∆Bt−1 - The sum of liquidity and time weighted average shortages or excess of Beans across :y
liquidity pools on the Minting Whitelist over the previous Season;

∆bΘ
t−1

- The liquidity and time weighted average shortage or excess of Beans in the BEAN:ETH
Well over the previous Season;

∆bΦt−1 - The shortage of Beans in the BEAN:3CRV Curve pool at the end of the previous Season;

∆bΦ
t−1

- The liquidity and time weighted average shortage or excess of Beans in the BEAN:3CRV
Curve pool over the previous Season;

58

Ct - A Stalkholder’s total Seeds during t;

C⊙ - A Stalkholder’s Seeds at the end of the block prior to the Exploit;

C⊗ - A Stalkholder’s Seeds upon Replant;

cλ - The number of Seeds per BDV of λ Deposited;

cλt - The Seeds during t for a given Deposit;

D - The total number of Unharvestable Pods;

∆Dt - The number of Pods that Ripen and become Harvestable at the beginning of each Season;

Dγ - The number of Unharvestable Pods that grew prior to the Flood;

d - The number of Pods that Yield from a given number of Sown ;

E - Ethereum block timestamps;

E1 - The timestamp in the Ethereum block containing the Beanstalk deployment;

EBIP - The end of a BIP’s Voting Period in Former Governance;

Emin
t - The minimum timestamp Beanstalk accepts a gm function call for a given t;

Eufirst

t - The Ethereum timestamp of the first Sow in t such that there is at most one Soil;

∆Eu
t - The difference in time it took for the Beans to be Sown in all but at most one Soil over

the previous two Seasons;

∆Eufirst

t - The time of the first Sow such that Beans are Sown in all but at most one Soil in each
Season;

Eq - The timestamp a BIP was committed in Former Governance;

E∗
Ξ - The current block timestamp;

EΞ - The timestamp of the current block;

EΨ - The timestamp Beanstalk last Unpaused;

Eℶ - The timestamp of the last interaction with ℶ;

Gt - A Stalkholder’s total Grown Stalk that can be Mown during t;

gλt - The Grown Stalk from Seeds from λ Deposits that can be Mown during t to start earning
Bean seigniorage for a given Deposit of a Stalkholder that last Mowed their Grown Stalk from
λ Deposits in κλ;

h - The Temperature;

hmax
t - The Maximum Temperature during t;

htq - The Temperature in block q of t;

Kmin - The percentage of Stalk ownership necessary to submit a BIP;

Kmin
end - The percentage of Stalk ownership necessary for a submitter’s BIP to pass at the end of

the Voting Period;

Kt - A Stalkholder’s total Stalk during t;

K⊙ - A Stalkholder’s Stalk at the end of the block prior to the Exploit;

K⊗ - A Stalkholder’s Stalk upon Replant;

59

kλ - The number of Stalk per BDV of λ Deposited;

kλt - The Stalk during t for a given Deposit of a Stalkholder that last Mowed their Grown Stalk
from λ Deposits in κλ;

Lλ
i - The total BDV of Zλ

i when Deposited;

M - The total Beans minted over all Seasons;

mt - The number of Beans that Beanstalk mints at the beginning of each Season;

N - The total Burnt over all Seasons;

P 3CRV - The 3CRV virtual price;

Pt−1 - The inferred liquidity and time weighted average price of 1 compared to V over the
previous Season;

PΦ - The Φ virtual price;

PΩ - The Ω virtual price;

Pℸ - The ℸ virtual price;

P ג - The ג virtual price;

Q - The length in blocks of the Morning ;

q - The current block of t;

RD - The Pod Rate;

RD
t−1 - The Pod Rate at the end of the previous Season;

S - Soil;

Send
t - The Soil supply at the end of the Season;

Sstart
t - The Soil supply at the beginning of the Season;

∆St - The change in Soil from the beginning to the end of each Season;

∂∆S
∂t - The rate of change of ∆St from Season to Season;

Smax
tq - The Maximum Soil in block q of t;

Smin
tq - The Minimum Soil in block q of t;

t - The current Season;

U - The total Sown over all Seasons;

u - The number of Sown ;

ut - The number of Sown during t;

∂ut

∂t - The rate of change of ut over the previous two Seasons;

V - The value peg for 1;

x - An existing ERC-20 Standard convertible stablecoin that (1) offers low-friction convertibility
to V and (2) trades on an AMM against y;

x:y - An existing liquidity pool that consists of x and y;

y - A liquid, decentralized network-native asset with endogenous value; and

Zλ
i - The total number of λ Deposited during Season i.

60

14.11.3 Mathfrak Style Latin Alphabet Variables

A - Active Fertilizer;

D - The total Unfertilized Sprouts;

∆D - The total Sprouts Fertilized by Fertilizer;

∆Dt - The number of Unfertilized Sprouts that are Fertilized by Active Fertilizer and become
Rinsable at the beginning of each Season;

d - The number of Sprouts ultimately Fertilized by Available Fertilizer purchased with Humidity
H;

F - The total Fertilizer;

H - The Humidity ;

M - The percentage of Ripe assets received for Chopping a pro-rata portion of Unripe assets;

PΘ - The number of Θ received for Chopping a given zΘ;

P - The number of Beans received for Chopping a given z ;

RΘ - Ripe Θ;

∆RΘ - The change in Ripe Θ for a given ∆S⅁;

R - Ripe ;

∆R - The change in Ripe for a given purchase of Fertilizer;

R<⅁ - The Ripe prior to a purchase of Fertilizer;

S - The total Fertilizer sold;

S<⅁ - The Fertilizer sold prior to a purchase of Fertilizer;

∆S⅁ - A purchase of Fertilizer;

U - Used Fertilizer;

V - Available Fertilizer;

VH - Available Fertilizer purchased with Humidity H;

X - The percentage of Fertilizer sold;

∆X - The change in X between (1) φ or (2) the Replant, if φ = 0, and t;

X⊗ - The percentage of Fertilizer sold prior to Replant;

ZΘ - The current total Unripe Θ;

Z - The total Unripe ;

ZΦ⊗ - The total Unripe Φ at the time of Replant;

zΘ - Unripe Θ;

zΘ
min

- The minimum number of Unripe Θ received for Converting Deposited Unripe Beans
within the Silo;

zΘ
@

- The zΘ token address;

z - Unripe ;

61

z
min

- The minimum number of Unripe Beans received for Converting Deposited Unripe Θ
within the Silo; and

z
@

- The z token address.

14.11.4 Greek Alphabet Variables

ζΦ - The price invariant for the BEAN:3CRV Curve pool;

ζΦΞ−1 - The flash-loan-resistant price invariant for the BEAN:3CRV Curve pool;

ζΦt−1 - The price invariant for Φ at the end of the previous Season;

ζΦ
t−1

- The liquidity and time weighted average price invariant for Φ over the previous Season;

ζΩ - The flash-loan-resistant price invariant for the LUSD:3CRV Curve pool;

ζℸ - The flash-loan-resistant price invariant for the old BEAN:3CRV Curve pool;

η - The last Season a Stalkholder called the plant function;

ηc - The Plantable Seeds associated with a Stalkholder’s η that can be Planted to start earning
Grown Stalk;

ηc⊙ - A Stalkholder’s Plantable Seeds at the end of the block prior to the Exploit;

η - Earned ;

Θ - BEAN:ETH Well LP tokens;

∂Θ
∂ - The inter-block MEV manipulation resistant derivative of the Θ LP token supply with
respect to Beans;

ΘEMA
,⅁ - The inter-block MEV manipulation resistant instantaneous Bean reserves in the Multi

Flow Pump of the BEAN:ETH Well in the current transaction;

ΘEMA
ETH,⅁ - The inter-block MEV manipulation resistant instantaneous ETH reserves in the Multi

Flow Pump of the BEAN:ETH Well in the current transaction;

ΘETH
⅁ - The number of ETH in the BEAN:ETH Well’s Reserves in the current transaction;

Θmin - The minimum number of Θ received for Converting to Deposited Θ within the Silo;

Θmin() - The minimum number of Beans that must be in the BEAN:ETH Well in order for the
oracle to be considered;

ΘSMA
,t0,⅁ - The inter-block MEV manipulation resistant TWA Bean reserves in the Multi Flow

Pump of the BEAN:ETH Well from the beginning of the Season to the current transaction;

ΘSMA
ETH,t0,⅁ - The inter-block MEV manipulation resistant TWA ETH reserves in the Multi Flow

Pump of the BEAN:ETH Well from the beginning of the Season to the current transaction;

Θ@ - The Θ token address;

Θ∗ - The data associated with the Well Function of Θ;

Θ⅁ - The number of Beans in the BEAN:ETH Well’s Reserves in the current transaction;

Θ
∗

t−1
- The optimal liquidity and time weighted average number of Beans in Θ over the previous

Season;

Λ - The Deposit Whitelist;

62

λ - and other assets on the Deposit Whitelist;

fλ(zλ) - The function to calculate the flash-loan-resistant Bean-denominated-value for a given
number of λ Deposited;

fλ→λ′
(zλ) - The function to determine the number of λ′ received for Converting a given number

of λ;

σ - A control variable used to calculate the Temperature during the Morning ;

Φ - BEAN:3CRV LP tokens;

Φ3CRV - The number of 3CRV in the BEAN:3CRV Curve pool;

Φmin - The minimum number of Φ received for Converting to Deposited Φ within the Silo;

ΦA - The A parameter of Φ;

Φ@ - The Φ token address;

Φt−1 - The number of Beans in Φ at the end of the previous Season;

Φ
∗

t−1 - The optimal number of Beans in Φ at the end of the previous Season;

Φ3CRV
t−1 - The number of 3CRV in Φ at the end of the previous Season;

ΦΞ−1 - The flash-loan-resistant total number of Φ;

ΦΞ−1 - The number of Beans in the BEAN:3CRV Curve pool at the end of the last block;

Φ3CRV
Ξ−1 - The number of 3CRV in the BEAN:3CRV Curve pool at the end of the last block;

Φ - The number of Beans in the BEAN:3CRV Curve pool;

Φ
t−1

- The liquidity and time weighted average number of Beans in Φ over the previous Season;

Φ
∗

t−1
- The optimal liquidity and time weighted average number of Beans in Φ over the previous

Season;

Φ3CRV
t−1

- The time weighted average number of 3CRV in Φ over the previous Season;

Ω - The LUSD:3CRV Curve pool;

ΩA - The A parameter of Ω;

ΩΞ−1 - The flash-loan-resistant total number of Ω;

Ω3CRV
Ξ−1 - The number of 3CRV in the LUSD:3CRV Curve pool at the end of the last block; and

ΩLUSD
Ξ−1 - The number of LUSD in the LUSD:3CRV Curve pool at the end of the last block.

14.11.5 Glyph Variant Greek Alphabet Variables

ϑ - An approximation of the current price of ETH in Beans;

κλ - The last Season a Stalkholder Mowed their Grown Stalk from λ Deposits;

ϖΞ - An approximation of the gas fee of the current block denominated in Wei;

ϱ - An approximation of the gas used to execute the gm function call;

ς - The difference between gasleft at the beginning and end of the gm function call;

φ - The Season a Stalkholder last called the enroot function;

φC
t - The number of Revitalized Seeds that can be Enrooted by a Stalkholder during t; and

φK
t - The number of Revitalized Stalk that can be Enrooted by a Stalkholder during t.

63

14.11.6 Hebrew Alphabet Variables

ℶ - Old BEAN:ETH Uniswap V2 LP tokens;

ℶ - The current total number of ℶ in the current block;

ℶ - The last traded price was a function of the current number of Beans in ℶ;

ℶ
t
- The time weighted average number of Beans in ℶ from the start of the current Season to

the current block;

ג - Old BEAN:LUSD Curve LP tokens;

ℸ - Old BEAN:3CRV Curve LP tokens;

ℸA - The A parameter of ℸ;

ℸΞ−1 - The flash-loan-resistant total number of ℸ;

ℸΞ−1 - The number of Beans in the old BEAN:3CRV Curve pool at the end of the last block;
and

ℸ3CRV
Ξ−1 - The number of 3CRV in the old BEAN:3CRV Curve pool at the end of the last block.

14.11.7 Symbol Variables

@
- The Beanstalk contract address;

- Bean;

min
- The minimum number of Beans received for Converting to Deposited Beans within the

Silo;

@
- The token address;

:y - A new liquidity pool that consists of Beans and y;

$ - 1 US Dollar;

$ETH - The inter-block MEV manipulation resistant USD price of 1 ETH;

$ETH(ν) - The USD price of 1 ETH in the ETH:USDC 0.05% fee Uniswap V3 pool;

$ETH(τ) - The USD price of 1 ETH in the ETH:USDT 0.05% fee Uniswap V3 pool;

$ETH(χ) - The USD price of 1 ETH from the ETH/USD Chainlink data feed;

∆$ETH(ν/χ)

- The percent difference between $ETH(χ) and $ETH(ν);

∆$ETH(τ/χ)

- The percent difference between $ETH(χ) and $ETH(τ);

$LUSD(Ω) - The USD price of 1 LUSD from the LUSD:3CRV Curve pool;

$ (Θ) - The USD price of 1 in the BEAN:ETH Well;

$ (Φ) - The USD price of 1 in the BEAN:3CRV Curve pool;

$
(Φ)

Ξ−1 - The flash-loan-resistant USD price of 1 in the BEAN:3CRV Curve pool;

$ (ℸ) - The USD price of 1 in the old BEAN:3CRV Curve pool; and

☼Ξ - An approximation of the cost to call the gm function in Beans in the current block.

64

14.12 Whitepaper Version History

The following is a complete version history of this whitepaper. Unless otherwise noted, references
within this Whitepaper Version History are not updated to reflect later changes.

• 1.0.0 (August 6, 2021)

– Original whitepaper.

• 1.0.1 (August 10, 2021) [Code Version 1.0.1 should have been 1.0.0.]

– Updated Section 5 to reflect that the first Season began when the init function was called
as part of the Beanstalk deployment.

– Updated Section 6.4.3 to reflect that the first Season began when the init function was
called as part of the Beanstalk deployment, and state that Pt = 1 for each Season that
contains a Pause.

– Moved a paragraph from Section 6.4.3 to 6.4.4 for better flow.

– Updated the definition of aq in Section 6.4.5 to reflect the correct base commit award. [aq

was defined correctly in Version 1.0.0 but defined incorrectly in Versions 1.0.1 - 1.1.2.]

– Updated Section 9.1 to reflect that the first Season began when the init function was called
as part of the Beanstalk deployment.

• 1.1.0 (August 26, 2021)

– Updated Section 6.3 to reflect the new Stalk equations, as amended by BIP-0.

– Added tf to the Glossary.

• 1.1.1 (September 15, 2021)

– Added bean.money URL to the cover page.

• 1.1.2 (September 23, 2021)

– Updated citation 16 with the correct URL for BIP-0.

• 1.1.3 (October 15, 2021) [Whitepaper Version 1.1.3 should have been 1.2.0. Code Version 1.1.2
should have been 1.2.0.]

– Updated the definition of aq in Section 6.4.5 to reflect the correct base commit award. [aq

was defined correctly in Version 1.0.0 but defined incorrectly in Versions 1.0.1 - 1.1.2.]

• 1.3.0 (November 11, 2021)

– Updated Section 8.4.8 to reflect the latest Weather changes, as amended by BIP-2.74

– Updated Section 11 to reflect an updated understanding of potential uses of Beanstalk.

– Created an Appendix and moved Section 12 and Section 13 to the Appendix as Sections
12.1 and 12.2, respectively.

– Updated Section 12.1 to reflect an updated understanding of potential uses of Beanstalk.

– Added Section 12.3, a Whitepaper Version History, to the Appendix.

74 bean.money/bip-2

65

https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_0_0.pdf
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_0_1.pdf
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_1_0.pdf
https://bean.money/bip-0
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_1_1.pdf
https://bean.money/
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_1_2.pdf
https://bean.money/bip-0
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_1_3.pdf
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_3_0.pdf
https://bean.money/bip-2
https://bean.money/bip-2

• 1.3.1 (December 3, 2021)

– Removed a sentence from the second paragraph of Section 6.2 to reflect the new Stalk
equations, as amended by Pause Patch-0.

– Updated Section 6.3 to reflect the new Stalk equations, as amended by Pause Patch-0.

– Added a comma in the second paragraph of Section 8.3 for clarity.

– Added f to the Glossary.

– Italicized Stalk in Whitepaper Version History changes for Version 1.1.0.

• 1.4.0 (December 10, 2021)

– Modified the formatting of two equations and the language of the fifth paragraph in Section
6.3 for clarity.

– Changed variables bh, h and Λh to bΩ, Ω and ΛΩ, respectively, in Section 6.3 and the
Glossary.

– Updated Sections 7.1, 8, 8.1, 8.2, 8.3 and 8.4.5 to reflect the new Soil mechanism, as
amended by BIP-6.75

– Added ht to the Glossary.

– Corrected a typo in the change history for Whitepaper Version 1.3.1 in Section 12.3.

• 1.5.0 (December 18, 2021)

– Modified the language of the seventh paragraph in Section 3 for clarity.

– Switched all > to < for consistency and clarity.

– Updated Sections 6.2, 6.3 and 9.6, and Figure 1, to reflect the new Convert mechanism, as
amended by BIP-7.76

– Updated Figure 2 to mirror the new design of Figure 1.

– Modified the language of the second paragraph in Section 11 for consistency.

• 1.6.0 (January 12, 2022)

– Modified the last sentence of the Abstract for better flow.

– Changed a semicolon to a colon in the fourth paragraph of Section 1 for clarity.

– Corrected a typo in the second paragraph of Section 3.

– Updated the fourth and fifth paragraphs of Section 3 to reflect an updated understanding
of potential uses of Beanstalk.

– Modified the language of the fifth paragraph of Section 4 for consistency.

– Modified the language of the first paragraph of Section 6.1 for clarity.

– Updated the first paragraph of Section 6.2 to reflect the newWithdrawal Freeze, as amended
by BIP-9.

– Modified the language of the second paragraph of Section 6.2 for clarity.

– Modified the language of the first, third and twelfth paragraphs of Section 6.3 for clarity.

– Modified the equation for Kt for consistency.

– Modified the language of the first paragraph of Section 6.4 for clarity.

– Updated Section 6.4.1 to reflect the new governance policy, as amended by BIP-9.

– Corrected a typo in the third paragraph of Section 6.4.2.

75 bean.money/bip-6
76 bean.money/bip-7

66

https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_3_1.pdf
https://snapshot.org/#/beanstalkfarms.eth/proposal/0xffc6033eb5a4e53f4da5df1c4011bacc12244914885fe11e6a6f2d09d856feed
https://snapshot.org/#/beanstalkfarms.eth/proposal/0xffc6033eb5a4e53f4da5df1c4011bacc12244914885fe11e6a6f2d09d856feed
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_4_0.pdf
https://bean.money/bip-6
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_3_1.pdf
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_5_0.pdf
https://bean.money/bip-7
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_6_0.pdf
https://bean.money/bip-9
https://bean.money/bip-9
https://bean.money/bip-6
https://bean.money/bip-7

– Changed variable Ef to EΨ in Section 6.4.3 and the Glossary.

– Corrected typos in the first paragraph of Section 6.4.4 and the fourth paragraph of Section
6.4.5.

– Modified the language of the third paragraph of Section 6.4.5 for clarity.

– Modified the language of the first paragraph of Section 7 for consistency.

– Updated the second paragraph of Section 7.2 to reflect the new Soil policy, as amended by
BIP-9.

– Updated Section 8.2 to reflect the new Bean supply policy, as amended by BIP-9.

– Corrected a typo and modified the language for clarity in the penultimate paragraph of
Section 8.2.

– Modified the last equation in Section 8.2 for consistency.

– Updated Section 8.3 to reflect the new Soil supply policy, as amended by BIP-9.

– Modified the language of the second paragraph of Section 8.3 for clarity.

– Updated the equation for Sstart
t in Section 8.3 to reflect the new Soil supply policy, as

amended by BIP-9.

– Corrected a typo in the first paragraph of Section 8.4.1.

– Modified the language of the second paragraph of Section 8.4.3 for clarity.

– Modified the language of the first and second paragraphs of Section 8.4.4 for clarity.

– Updated Section 8.4.5 to reflect the new Soil supply policy, as amended by BIP-9.

– Modified the language of the first paragraph of Section 8.4.7 for clarity.

– Corrected a typo, and modified the language to reflect the new Season of Plenty timer, as
amended by BIP-9, in the second paragraph of Section 8.2.

– Modified the language of the third paragraph of Section 9.1 for clarity.

– Modified the section titles of Sections 9.1, 9.2 and 9.4 for consistency.

– Modified the language of the second and third paragraphs of Section 9.4 for clarity.

– Modified the language of the first and second paragraphs of Section 9.6 for clarity.

– Modified the language of the third and fourth paragraphs of Section 9.6 to reflect current
incentive structures.

– Corrected a typo in the second paragraph of Section 10.

– Modified the language of the fourth paragraph of Section 10 for accuracy.

– Updated the fifth paragraph of Section 11 to reflect an updated understanding of potential
uses of Beanstalk.

– Modified the section title, and language of the first paragraph, of Section 12.1 to clarify the
listed parameters are current.

– Modified the conventions in Section 12.2 to reflect consistency with regard to Latin letters
only.

– Added Kmin, ΛSilo, and ξ to the Glossary.

– Changed Send
t−1 to Send

t in the Glossary for consistency.

– Removed Bt, S
max
t , and Rmax

S from the Glossary.

– Modified the language in the change histories for Versions 1.0.1, 1.1.0, 1.1.3, 1.3.1 in Section
12.3 for consistency.

67

https://bean.money/bip-9
https://bean.money/bip-9
https://bean.money/bip-9
https://bean.money/bip-9
https://bean.money/bip-9
https://bean.money/bip-9
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_0_1.pdf
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_1_0.pdf
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_1_3.pdf
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_3_1.pdf

• 1.7.0 (February 5, 2022)

– Added a new Section 12.2 to describe the Farmers Market to the Appendix.

– Changed Deposit in the Glossary for clarity.

– Moved Optimal State in the Glossary to reflect correct alphabetical ordering.

– Added Cancel, Farmers Market, Fill, Listing, Plot, Pod Line, Pod Listing, and Withdrawal
to the Glossary.

• 1.8.0 (March 10, 2022)

– Changed the fourth paragraph of Section 4 to reflect the update to the Silo, as amended
by BIP-12.77

– Changed Section 6 to reflect the update to the Silo, as amended by BIP-12.

– Changed the third paragraph of Section 11 to reflect additional potential changes to the
Silo.

– Added cλ, cλt , g
λ(zλ), kλ, Kλ

t , l, λ, Λ, z
λ and Zλ

i to the Glossary.

– Changed G to µ, Λ to ϕ and ΛSilo to ϕSilo in the Glossary.

– Removed bΩ, ct , c
Λ
t , kt , k

Λ
t , l

Λ
i , λ , λΛ, ΛΩ, zi , z

Λ
i , z

Λ:
i and Ω from the Glossary.

• 1.9.0 (March 11, 2022)

– Updated Figure 11 and Figure 12 to reflect the new Weather changes, as amended by
BIP-13.78

– Corrected a typo in the change history for Whitepaper Version 1.3.0 in Section 12.3.

• 1.9.1 (March 16, 2022)

– Corrected Section 8.4.8 to reflect the new Weather changes, as amended by BIP-13.

– Updated Whitepaper Version History links for Versions 1.6.0, 1.7.0, and 1.8.0.

• 1.9.2 (April 1, 2022)

– Corrected a typo in the first paragraph of Section 6.2.

– Updated the second paragraph of Section 6.2 to reflect the flash-loan-resistant nature of
Bean-denominated-value.

– Corrected the formatting of aBIP and ABIP.

– Corrected Section 6.5.5 to reflect the correct rate and duration that aq compounds.

– Updated the equation for B in Section 8.4.5 to include BBIP.

– Corrected Section 8.4.8 to reflect the Weather changes when RD equals RDlower

, RD∗
or

RDupper

.

– Added a new Section 12.2 to describe the Silo Whitelist to the Appendix.

– Added a new Section 12.4 to describe Fundraisers to the Appendix.

– Added BBIP, BDV, c , cϕ, cΦ, EΞ, Eϕ, EΨ, ζ
Φ, g (z), gϕ(zϕ), gΦ(zΦ), g3CRV(z3CRV), k ,

kϕ, kΦ, PΦ, P 3CRV, Φ, ϕ
t
, ϕΞ, ϕΞ, ΦΞ−1, ΦΞ−1 and Φ3CRV

Ξ−1 to the Glossary.

– Corrected two typos in the Glossary.

• 1.9.3 (April 3, 2022)

77 bean.money/bip-12
78 bean.money/bip-13

68

https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_7_0.pdf
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_8_0.pdf
https://bean.money/bip-12
https://bean.money/bip-12
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_9_0.pdf
https://bean.money/bip-13
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_3_0.pdf
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_9_1.pdf
https://bean.money/bip-13
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_9_2.pdf
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_9_3.pdf
https://bean.money/bip-12
https://bean.money/bip-13

– Corrected typos in the eleventh paragraph of Section 8.4.5, Section 12.2, third paragraph
of Section 12.4, Glossary and Whitepaper Version History changes for Version 1.1.0.

• 1.15.0 (April 7, 2022)

– Moved to a new whitepaper versioning system such that Whitepaper Versions line up with
BIPs.

– Moved the definition of B to Section 8.4.1 for consistency and clarity.

– Updated Section 8.4.5 to reflect the new method to measure demand for Soil, as amended
by BIP-15.79

– Added ∆Eufirst

t and Eufirst

t to the Glossary.

– Changed the definition of ∆Eu
t in the Glossary.

– Removed ∆Eulast

t , ∆RS
t−1,

∂RS

∂t , ∂RS

∂t

upper
, Eufirst

t−1 , RS , RSmin

, RSend

t and RSstart

t from the
Glossary.

– Added a comma for clarity in 18 instances in the Whitepaper Version History.

• 1.16.0 (April 11, 2022)

– Modified Sections 12.2.2 and 12.2.3 for consistency.

– Added Section 12.2.4 to reflect the addition of α to the Silo Whitelist, as amended by
BIP-16.80

– Added $ (Φ), $LUSD(Ω)), α, cα, ζΩ, gα(zα), kα, Pα, PΩ, ΦA, Ω, ΩA, ΩΞ−1, Ω
LUSD
Ξ−1 and

Ω3CRV
Ξ−1 to the Glossary.

– Added the word “liquidity” for clarity in 6 instances in the Glossary.

– Added the word “v2” for clarity in 3 instances in the Glossary.

– Added the word “Curve” for clarity in 3 instances in the Glossary.

– Moved the ordering of PΦ and P 3CRV in the Glossary for consistency.

• 2.0.0 (August 6, 2022)

– Completely overhauled the whitepaper to reflect the state of Beanstalk after the Replant.

• 2.0.1 (September 15, 2022)

– Changed Section 14.6 to reflect the update to the the calculation of ∆bΦ
t−1

, as amended by

EBIP-2.81

– Updated BIP links throughout the whitepaper to the Beanstalk Governance Proposals
GitHub Repository.82

– Corrected eight instances of improper punctuation in the Whitepaper Version History.

• 2.1.0 (October 5, 2022)

– Changed the last paragraph in Section 5.4 to reflect the addition of λ → λ Converts, as
amended by BIP-24.83

– Corrected a typo in the last paragraph of Section 7.1 and the first paragraph of Section
7.3.1.

– Added a new Section 14.4.1 to reflect the addition of λ → λ Converts, as amended by
BIP-24.

– Corrected the date of modification of Version 2.0.1 in the the Whitepaper Version History.

79 bean.money/bip-15
80 bean.money/bip-16
81 bean.money/ebip-2
82 github.com/BeanstalkFarms/Beanstalk-Governance-Proposals
83 bean.money/bip-24

69

https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_15_0.pdf
https://bean.money/bip-15
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk1_16_0.pdf
https://bean.money/bip-16
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk2_0_0.pdf
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk2_0_1.pdf
https://bean.money/ebip-2
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk2_1_0.pdf
https://bean.money/bip-24
https://bean.money/bip-24
https://bean.money/bip-15
https://bean.money/bip-16
https://bean.money/ebip-2
http://github.com/BeanstalkFarms/Beanstalk-Governance-Proposals
https://bean.money/bip-24

• 2.1.1 (October 6, 2022)

– Corrected the BDV per token in Sections 14.5.2, 14.5.3 and 14.5.4.

• 2.2.0 (November 11, 2022)

– Changed periods at the beginning of lists to colons for correctness.

– Removed () when referring to functions throughout the whitepaper.

– Changed Sections 14.8.1.1 and 14.8.1.2 to reflect the (1) addition of an input for Pod Orders
and Pod Listings that specifies the minimum number of Pods that can be used to Fill them,
as amended by EBIP-3 and (2) upgrade to the price per Pod input for Pod Orders and Pod
Listings to support a piecewise polynomial function that determines the price per Pod by
its current place in the Pod Line, denominated in Beans, as amended by BIP-29.84,85

– Corrected a typo in the first paragraph of Section 14.8.1.3.

– Removed the future work item regarding support for arbitrary pricing functions in Pod
Orders and Pod Listings in Section 14.8.1.4, as amended by BIP-29.

– Updated intro to the Glossary for clarity.

– Added Kmin to the Glossary.

– Moved Φ in the Glossary.

– Corrected a typo in the definition of ∆R in the Glossary.

– Removed duplicate definitions of Rinsable and Unfertilized Sprouts from the Glossary.

– Corrected a typo in the Whitepaper Version History intro.

• 2.3.0 (December 8, 2022)

– Updated the award for successfully calling the sunrise in Section 4, as amended by BIP-
30.86

– Changed Gnosis to Safe in Section 5.5.5.

– Updated citation 29 with the new link for the Beanstalk Community Multisig.

– Updated Section 14.9 to reflect the addition of Pipeline Pipeline to Depot, as amended by
BIP-30.

– Updated BIP links throughout the whitepaper to bean.money links that redirect to an
Arweave upload of the given BIP.

– Updated Snapshot proposal links throughout the whitepaper to bean.money links that
redirect to an Arweave upload of the given proposal.

– Capitalized Whitepaper Version throughout the Whitepaper Version History for consis-
tency.

– Updated Whitepaper Version links in the Whitepaper Version History to the Beanstalk
Whitepaper GitHub Repository.87

– Added citations for EBIP-3 and BIP-29 in the Whitepaper Version History.

– Corrected a citation formatting error under Version 2.0.1 in the Whitepaper Version History.

– Corrected a typo under Version 1.16.0 in the Whitepaper Version History.

84 bean.money/ebip-3
85 bean.money/bip-29
86 bean.money/bip-30
87 github.com/BeanstalkFarms/Beanstalk-Whitepaper

70

https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk2_1_1.pdf
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk2_2_0.pdf
https://bean.money/ebip-3
https://bean.money/bip-29
https://bean.money/bip-29
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk2_3_0.pdf
https://bean.money/bip-30
https://bean.money/bip-30
https://bean.money/bip-30
https://bean.money
https://bean.money
https://bean.money/ebip-3
https://bean.money/bip-29
https://bean.money/ebip-3
https://bean.money/bip-29
https://bean.money/bip-30
http://github.com/BeanstalkFarms/Beanstalk-Whitepaper

• 2.4.0 (July 3, 2023)

– Changed the sunrise function to the gm function throughout the whitepaper, as amended
by BIP-34.88

– Updated the second paragraph of Section 4 to reflect that blocks on Ethereum are no longer
mined after the Merge.

– Updated Section 4 to reflect the changes to the award for successfully calling the gm function,
as amended by BIP-34.

– Changed Et to EΞ throughout the whitepaper for clarity.

– Corrected a typo in the second paragraph of Section 5.5.1.

– Updated Section 5.5.1 to reflect that (1) a Stalkholder’s vote is a function of their Stalk
at the beginning of the Voting Period that still exists, (2) Stalkholders have the ability to
delegate their vote to any other user, and (3) the submitter of a BIP must own more than
Kmin

end percent of total Stalk at the end of the Voting Period in order for the BIP to be able
to pass, as amended by BIP-35.89

– Updated Section 5.5.2 to (1) improve clarity around when the Voting Period begins, (2)
account for the BIP passing or failing based on the total outstanding Stalk at the beginning
of the Voting Period that still exists, and (3) reintroduce the 24 hour period after the
beginning and before the end of the Voting Period where a BIP cannot be passed via
supermajority, as amended by BIP-35.

– Updated the BIP inputs in the second paragraph of Section 5.5.4 to reflect the current state
of off-chain governance.

– Updated Sections 6, 6.1 and 6.3 to reflect the changes to the Soil supply and Temperature
introduced by the Morning, as amended by BIP-34.

– Updated Section 8.7 to reflect that (1) demand for Soil is now based on the number of
Sown each Season rather than the change in Soil at the beginning and end of each Season

and (2) Beanstalk considers demand for Soil increasing if ∆Eufirst

t−1 < 600, as amended by
BIP-34.

– Updated Sections 8.11 and 8.12 and added Sections 8.12.1 and 8.12.2 to reflect the changes
in the Soil supply and Temperature introduced by the Morning, as amended by BIP-34.

– Updated the Risk section to include a citation for the Beanstalk DAO Disclosures.90

– Replaced the Beanstalk audit report citation links in the Risk section with the link to the
Beanstalk Audits GitHub Repository.91

– Changed ∂∆S
∂t to ∂ut

∂t in Future Work for consistency.

– Updated the notation of percentage values in the Current Parameters for clarity.

– Corrected w1 to h1 in Current Parameters.

– Changed ∂∆S
∂t

lower
and ∂∆S

∂t

upper
to ∂ut

∂t

lower
and ∂ut

∂t

upper
, respectively, in Current Param-

eters for consistency.

– Added Kmin
end , Q and σ to Current Parameters.

– Removed RSmin

, RSmax

, and ∂RS

∂t

upper
from Current Parameters.

– Updated Section 14.2.2 to reflect that the definitions of $
(Φ)

Ξ−1 , ΦΞ−1, Φ
3CRV
Ξ−1 , P 3CRV, ΦA,

PΦ, ζΦΞ−1, and ΦΞ−1 were moved to Section 4.

– Updated the intro of the Glossary to include that the q subscript is the current block of t.

88 bean.money/bip-34
89 bean.money/bip-35
90 bean.money/disclosures
91 github.com/BeanstalkFarms/Beanstalk-Audits

71

https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk2_4_0.pdf
https://bean.money/bip-34
https://bean.money/bip-34
https://bean.money/bip-35
https://bean.money/bip-35
https://bean.money/bip-34
https://bean.money/bip-34
https://bean.money/bip-34
https://bean.money/bip-34
https://bean.money/bip-35
http://bean.money/disclosures
http://github.com/BeanstalkFarms/Beanstalk-Audits

– Added hmax
t , htq , K

min
end , Maximum Soil, Minimum Soil, Maximum Temperature, ϖΞ, Q, q,

ϱ, Smax
tq , Smin

tq , ☼Ξ, σ, ς, ϑ, ut, and
∂ut

∂t to the Glossary.

– Updated the definitions of EΞ, S
end
t and Sstart

t in the Glossary.

– Removed E∗
Ξ and Smin

t from the Glossary.

– Added language to aq, Eq and EBIP in the Glossary to clarify that they refer to Former
Governance.

– Corrected a typo under Version 2.0.1 in the Whitepaper Version History.

• 2.5.0 (July 31, 2023)

– Added Beanstalk Farms as an author to the whitepaper.

– Updated Sections 5.1 and 5.4 to reflect that Grown Stalk must now be Mown for each λ,
as amended by BIP-36.92

– Updated Section 5.3 to reflect the implementation of Deposits as ERC-1155 Standard to-
kens, as amended by BIP-36.

– Updated Figure 1, Sections 5.3, 8.13, 11.6, 14.8.1.4, and Future Work to reflect the removal
of the Withdrawal Freeze and Oversaturated, as amended by BIP-36.

– Updated Section 5.4 to reflect (1) that Beans minted to the Silo are distributed to Stalkhold-
ers and become Earned 10 blocks past the beginning of the Season in which they were
minted, (2) the changes to the Deposit accounting system and (3) that Stalk is no longer
lost due to rounding during Conversions, as amended by BIP-36.

– Updated Section 5.5.5 and Future Work to reflect the expectation that permissionless gov-
ernance need not be reimplemented and that future BIPs will remove governance entirely.

– Added the ERC-1155 Standard to the Risk section.

– Removed ξ from Current Parameters.

– Corrected the formatting of Stalk and Seeds in Sections 14.2 and 14.5.

– Updated Sections 14.2.3 and 14.2.4 to reflect that the Seeds per BDV for z and zΦ are 0,
as amended by BIP-36.

– Added Deposit ID to the Glossary.

– Updated the definitions of Dγ , g
λ
t and kλt in the Glossary.

– Changed κ to κλ in the Glossary.

– Removed Frozen, Oversaturated, Withdrawal Freeze and Withdrawn assets from the Glos-
sary.

– Corrected the formatting of Minimum Soil and Smin
tq in the Glossary.

• 2.6.0 (October 16, 2023)

– Updated the email address for Beanstalk Farms.

– Updated Section 4 to reflect that the current price of ETH in Beans is calculated using the
Multi Flow Pump on the BEAN:ETH Well, as amended by BIP-37.93

– Updated the citation for BIP-2094 in Section 7.3.3.

– Corrected a typo in the second paragraph of Section 8.

– Corrected typos in the second and seventh paragraphs of Section 8.2.

– Updated language in the third paragraph of Section 8.2 for accuracy.

92 bean.money/bip-36
93 bean.money/bip-37
94 bean.money/bip-20

72

https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk2_5_0.pdf
https://bean.money/bip-36
https://bean.money/bip-36
https://bean.money/bip-36
https://bean.money/bip-36
https://bean.money/bip-36
https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk2_6_0.pdf
https://bean.money/bip-37
https://bean.money/bip-36
https://bean.money/bip-37
https://bean.money/bip-20

– Updated the citation for WETH in Section 8.2.

– Updated Section 8.2 to reflect the instances in which Beanstalk uses a Chainlink data feed
as part of the price oracle, as amended by BIP-37.

– Corrected a typo in the first paragraph of Section 8.13.

– Updated Section 8.13 to reflect that (1) at the beginning of each Season during a Flood,
Beanstalk returns the price of 1 in each liquidity pool on the Flood Whitelist to its value
peg by minting additional Beans and selling them directly in the pools, and (2) liquidity
pools can be added to and removed from the Flood Whitelist via Beanstalk governance.

– Overhauled the Risk section to reflect the current state of Beanstalk.

– Removed support of additional Pipelines from the Future Work section.

– Added Θmin() to the Current Parameters.

– Reordered the Current Parameters to be consistent with the updated Glossary.

– Updated Sections 14.2.1 and 14.2.2 to reflect the change in Seeds per BDV for and Φ to
3 and 3.25, respectively, as amended by BIP-37.

– Updated Section 14.2.2 to include the definitions of $
(Φ)

Ξ−1 , ΦΞ−1, Φ
3CRV
Ξ−1 , P 3CRV, ΦA, PΦ,

ζΦΞ−1, and ΦΞ−1, which were removed from Section 4.

– Fixed typos in the BDV functions for Sections 14.2.3 and 14.2.4.

– Added Section 14.2.5 to reflect the addition of Θ to the Deposit Whitelist, as amended by
BIP-37.

– Fixed a typo in the fourth paragraph of Section 14.4.2 and under Conditions in Sections
14.4.2, 14.4.3, 14.4.4 and 14.4.5.

– Updated the Convert functions in Sections 14.4.2, 14.4.3, 14.4.4 and 14.4.5 for accuracy.

– Added Sections 14.4.6 and Sections 14.4.7 to reflect the addition of → Θ and Θ →
Conversions to the Convert Whitelist, as amended by BIP-37.

– Amended Sections 14.5.2 and 14.5.3 for clarity.

– Fixed a typo under Seeds per BDV in Section 14.5.3.

– Amended the intro to Section 14.6 for clarity.

– Fixed a typo and defined Bt−1 in Section 14.6.1.

– Added Section 14.6.2 to reflect the addition of Θ to the Oracle Whitelist, as amended by
BIP-37.

– Renamed Section 14.7 to Flood Whitelist and updated the intro for clarity.

– Updated Section 14.9.2 to reflect the new Pipeline contract address used by Depot, as
amended by BIP-37.

– Overhauled the ordering of the Glossary for readability.

– Added Flood Whitelist, TWA, Bt−1, ∆bΘ
t−1

, mt,
∂Θ
∂ , ΘEMA

,⅁ , ΘEMA
ETH,⅁, Θ

ETH
⅁ , Θmin, Θmin(),

ΘSMA
,t0,⅁, Θ

SMA
ETH,t0,⅁, Θ

∗, Θ⅁, Θ
∗

t−1
, Θ→, $ETH, $ETH(ν), $ETH(τ), $ETH(χ), ∆$ETH(ν/χ)

, ∆$ETH(τ/χ)

and $ (Θ) to the Glossary.

– Updated the definitions for Flood, BBIP, Φmin and
min

in the Glossary.

– Removed κ from the Glossary.

73

https://bean.money/bip-37
https://bean.money/bip-37
https://bean.money/bip-37
https://bean.money/bip-37
https://bean.money/bip-37
https://bean.money/bip-37

• 2.7.0 (December 14, 2023)

– Changed Oracle Whitelist to Minting Whitelist throughout the whitepaper.

– Updated Sections 7, 7.1 and Figure 3 to reflect that Fertilizer is purchased with ETH, as
amended by BIP-38.95

– Updated Sections 7.3, 7.3.1, 7.3.3, 7.3.4, 7.3.5, 14.2.4, 14.4.4, 14.4.5 and the Risk section to
reflect the BEAN:ETH Migration, as amended by BIP-38.

– Updated Sections 14.2, 14.4, 14.6 and 14.7 to use
@
, Φ@, z

@

, zΘ
@

and Θ@ for token
addresses.

– Updated Section 14.4.6 to reflect that the definition of $ETH was moved to Section 7.1.

– Fixed typos in Sections 14.4.7, 14.5.2 and 14.5.4.

– Added BEAN:ETH Migration, zΘ
@

, z
@

, Θ@, Φ@,
@
and

@
to the Glossary.

– Changed PΦ, RΦ, ∆RΦ, ZΦ, zΦ and zΦ
min

to PΘ, RΘ, ∆RΘ, ZΘ, zΘ and zΘ
min

, respectively,
in the Glossary.

– Updated the definition for z
min

in the Glossary.

– Removed Θ→ from the Glossary.

95 bean.money/bip-38

74

https://github.com/BeanstalkFarms/Beanstalk-Whitepaper/blob/master/version-history/beanstalk2_7_0.pdf
https://bean.money/bip-38
https://bean.money/bip-38
https://bean.money/bip-38

	Introduction
	Convertible Stablecoins
	Non-convertible Stablecoins
	Beanstalk

	Previous Work
	Farm
	Sun
	Silo
	The Stalk System
	Deposit Whitelist
	Deposits, Withdrawals, Transfers and Conversions
	Calculating Stalk and Seeds
	Governance
	Participation
	Voting Period
	Pause
	Beanstalk Improvement Proposals
	Beanstalk Community Multisig

	Field
	Soil
	Pods
	Temperature

	Barn
	Fertilizer
	Humidity
	Recapitalization
	Available Fertilizer
	Revitalized Stalk and Seeds
	Unripe Assets
	Ripe Assets
	Chopping

	Peg Maintenance
	Ideal Equilibrium
	Decentralized Price Oracle
	Debt Level
	Position
	Direction
	Acceleration
	Demand for Soil
	Current State
	Optimal State
	Bean Supply
	Soil Supply
	Temperature
	Maximum Temperature
	Morning

	Flood

	Market
	Depot
	Economics
	Ownership Concentration
	Strong Credit
	Marginal Rate of Substitution
	Low Friction
	Equilibrium
	Incentives

	Risk
	Future Work
	Appendix
	Current Parameters
	Deposit Whitelist
	[scale=0.23]./logos/bean.svg
	
	z[scale=0.17]./logos/microbean-wide.svg
	z
	

	Former Governance
	Convert Whitelist
	
	[scale=0.23]./logos/bean.svg
	 [scale=0.23]./logos/bean.svg
	z[scale=0.17]./logos/microbean-wide.svg z
	z z[scale=0.17]./logos/microbean-wide.svg
	[scale=0.23]./logos/bean.svg
	 [scale=0.23]./logos/bean.svg

	Barn
	Old [scale=0.23]./logos/bean.svg
	Old BEAN:ETH Uniswap V2 LP Tokens ()
	Old BEAN:3CRV Curve LP Tokens ()
	Old BEAN:LUSD Curve LP Tokens ()

	Minting Whitelist
	
	

	Flood Whitelist
	

	Market
	Pods
	Pod Orders
	Pod Listings
	Clearance
	Future Work

	Depot
	Curve
	Pipeline

	Fundraisers
	Trail of Bits Audit
	Omniscia Audit
	Omniscia Retainer

	Glossary
	Terms
	Latin Alphabet Variables
	Mathfrak Style Latin Alphabet Variables
	Greek Alphabet Variables
	Glyph Variant Greek Alphabet Variables
	Hebrew Alphabet Variables
	Symbol Variables

	Whitepaper Version History

